Geothermal System in Parang Wedang, Yogyakarta, Indonesia


  • Mochamad Iqbal Petrology, Volcanology, and Geothermal Research Group, Geological Engineering, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Huwi, 36365, Lampung, Indonesia
  • Bella Restu Juliarka Petrology, Volcanology, and Geothermal Research Group, Geological Engineering, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Huwi, 36365, Lampung, Indonesia



geomagnetic, geothermal system, intrusion-related, low-enthalpy, Parang Wedang


Geothermal manifestations in Parangtritis, Indonesia, known as Parang Wedang Hot Spring, indicate a geothermal system in the subsurface. This circumstance motivated our research to model the Parang Wedang geothermal system in order to determine its subsurface conditions. Geological mapping, the geophysical method, and geochemical analysis were integrated to produce a conceptual model of the Parang Wedang geothermal system. The study area consists of structural hills, karst hills, and eolian plains with andesite breccias, limestone, andesite, and sand deposits as lithological variations. The results of magnetic modeling indicate that the research area is associated with the presence of an andesite intrusion and shows a NE-SW trending geological structure that is thought to be a path for hydrothermal fluid to the surface. Geochemical analysis was performed at two hot springs with temperatures of 47C and 49C. Geothermometer calculation showed that the geothermal reservoir in Parang Wedang has a temperature of 100 to 120C, a depth of about 180 to 285 m, and can be classified as a low enthalpy geothermal system.


Download data is not yet available.


Lund, J.W., Direct Heat Utilization of Geothermal Energy, in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2021.

Girianna, M., Geothermal Handbook for Indonesia. BAPPENAS, 2014.

Pambudi, N.A., Geothermal Power Generation in Indonesia, A Country Within the Ring of Fire: Current Status, Future Development and Policy, Renewable and Sustainable Energy Reviews, 81, pp. 2893-2901, Jan. 2018.

Idral, A., Suhanto, E., Sumardi, E., Kusnadi, D. & Situmorang, T., Integrated Geology, Geochemistry and Geophysics Investigation of the Parangtritis Geothermal Area, Colloquium of Mineral Resources Inventory Results, Bandung, 2003.

Hochstein, M.P. & Browne, P.R.L., Surface Manifestations of Geothermal Systems with Volcanic Heat Sources, in Encyclopedia of Volcanoes, 1st ed., Academic Press, 2000.

Tae, Y.D., Florency, F., Putri, R.A., Padjeko, M.A., Senduk, S.E. & Kiswiranti, D., Identification of Non-Volcanic Geothermal Potential with the Combination of Remote Sensing Data (GIS) and Geological Mapping in Parang Wedang, Kretek District, Bantul Regency, Special Region of Yogyakarta, 11th Earth Science National Conference, 2018 (Text in Indonesian).

Yudiantoro, D.F., Choiriah, S.U., Paramitahaty, I. & Ardian, M.I.N. Characteristics and Potential of Geothermal Systems based on Water Geochemistry in Parangtritis Region, Kretek District, Bantul Regency, Special Region of Yogyakarta, Prosiding LPPM UPN ?VETERAN? Yogyakarta, 2016. (Text in Indonesian)

Singarimbun, A., Gaffar, E.Z. & Tofani, P., Modeling of Reservoir Structure by Using Magnetotelluric Method in the Area of Mt. Argopuro, East Java, Indonesia, Journal of Engineering and Technological Sciences, 49(6), pp. 833-847, Dec. 2017.

Grandis, H., Warsa, W. & Sumintadireja, P., Layer Stripping in Magnetotellurics (MT) for Enhancement of Resistivity Change Effect in Reservoir: Equivalence Analysis, Journal of Engineering and Technological Sciences, 52(2), pp. 258-270, Apr. 2020.

Rahardjo, W., Sukandarrumidi & Rosidi, H., Geological Map Sheet Yogyakarta, Java scale 1:100,000, Geological Agency, 1995 (Text in Indonesian).

van Bemmelen, R.W., The Geology of Indonesia, The Hague: Govt. Print. Off, 1949.

Pannekoek, A.J., Outline of the Geomorpohology of Java. E.J. Brill, 1949.

Surono, S., Litostratigraphy of the Eastern Southern Mountains of the Special Region of Yogyakarta and Central Java, Jurnal Geologi dan Sumberdaya Mineral, 19(3), pp. 209-221, Jun. 2009, (Text in Indonesian).

Pollack, A., Cladouhos, T.T., Swyer, M.W., Siler, D., Mukerji, T. & R. N. Horne, Stochastic Inversion of Gravity, Magnetic, Tracer, Lithology, And Fault Data for Geologically Realistic Structural Models: Patua Geothermal Field Case Study, Geothermics, 95, 102129, Sep. 2021.

Abdel Zaher, M., Saibi, H., Mansour, K., Khalil, A. & Soliman, M., Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt, Renewable and Sustainable Energy Reviews, 82, pp. 3824-3832, Feb. 2018.

Grabowska, T. & Bojdys, G., Analysis of geomagnetic field along seismic profile P4 of the International Project POLONAISE'97, Tectonophysics, 383(1), pp. 15-28, May 2004.

Arnsson, S., Bjarnason, J., Giroud, N., Gunnarsson I. & Stefsson, A., Sampling and Analysis of Geothermal Fluids, Geofluids, 6(3), pp. 203-216, 2006.

Dunham, R.J., Classification of Carbonate Rocks According to Depositional Textures, 38, pp. 108-121, 1962.

Telford, W.M. & Sheriff, R.E., Applied Geophysics. Cambridge University Press, 1990.

Nicholson, K., Geothermal Fluids. Springer Berlin Heidelberg, 1993.

Giggenbach, W.F., Geothermal Solute Equilibria, Derivation of Na-K-Mg-Ca geoindicators, Geochimica et Cosmochimica Acta, 52(12), pp. 2749-2765, Dec. 1988.

Iqbal, M., Herdianita, N.R. & Risdianto, D., Characteristic of Geothermal Fluid at East Manggarai, Flores, East Nusa Tenggara, IOP Conf. Ser.: Earth Environ. Sci., 42(1), 012016, 2016.

Hartono, G. & Bronto, S., The Origins of the Formation of Mount Batur in the Wediombo Area, Gunungkidul, Yogyakarta, Indonesian Journal on Geoscience, 2(3), Art. no. 3, Sep. 2007 (Text in Indonesian).

Anderson, D.N. & Lund, J., Direct Utilization of Geothermal Energy: A Technical Handbook, Jan. 1979.

Saptadji, N.M., Geothermal Engineering, 1st ed. ITB Press, 2018. (Text in Indonesian)