The Effects of Long-Term Storage on the Quality of Palm Oil Biodiesel and Canola Oil Biodiesel

Authors

  • Yoyon Wahyono Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Jalan Imam Bardjo SH, Pleburan, Semarang, Central Java 50241, Indonesia
  • Hadiyanto Hadiyanto Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Central Java 50275, Indonesia https://orcid.org/0000-0003-0074-7078
  • Mochamad Arief Budihardjo Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Central Java 50275, Indonesia
  • Rifqi Ahmad Baihaqi Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Central Java 50275, Indonesia
  • Ainun Nurusy Syahida Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Central Java 50275, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.1

Keywords:

biodiesel, palm oil, canola oil, oxidation, storage time

Abstract

Effective storage of biodiesel has proven to be a challenge, which the Indonesian government has invested billions of Indonesian rupiahs (IDR) in to overcome. It is thus important to investigate how different storage methods can affect the quality of biodiesel. The purpose of this study was to determine how storage at room temperature in the dark affects the quality of palm oil biodiesel (POB) and canola oil biodiesel (COB). POB and COB were stored in closed containers at 22C in the dark for 12 months. The results showed that POB was more significantly damaged than COB. This study found increases of density (POB by 51.52 kg/m3 and COB by 17.52 kg/m3), kinematic viscosity (POB by 0.67 mm2/s and COB by 0.32 mm2/s), acid value (POB by 0.27 mg-KOH/g and COB by 0.25 mg-KOH/g), total glycerol (POB by 0.58%-mass and COB by 0.60%-mass), and peroxide value (POB by 48 meq-O2/kg and COB by 54 meq-O2/kg), whereas there were decreases in fatty acid methyl esters (POB by 7.11%-mass and COB by 9.36%-mass). Gas chromatography-mass spectrometry results for POB and COB showed decreases in 9-octadecenoic acid methyl ester and 9,12-octadecadienoic acid (Z,Z)-methyl ester, and increases in 9-octadecenoic acid and 9,12-octadecadienoic acid (Z,Z). Fourier transform infrared spectroscopy (FTIR) results revealed the presence of methyl ester functional groups. The storage of biodiesel in a closed container at 22C in the dark can minimize biodiesel oxidation, as evidenced by the findings of this study, namely, the insignificant formation of ketone and aldehyde groups in the biodiesel oxidation process during storage, based on the results of FTIR.

Downloads

Download data is not yet available.

Author Biography

Mochamad Arief Budihardjo, Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Central Java 50275, Indonesia

Department of Environmental Engineering, Faculty of Engineering, Diponegoro University 

References

Singh, D., Sharma, D., Soni, S.L., Sharma, S., Sharma, P.K. & Jhalani, A., A Review on Feedstocks, Production Processes, And Yield for Different Generations of Biodiesel, Fuel, 262, pp. 1-15., 2019. DOI: 10.1016/j.fuel.2019.116553.

Ziolkowska, J.R., Biofuels Technologies: An Overview of Feedstocks, Processes, and Technologies, Bio. for a Mo. Sus. Fut., pp. 1-19, 2020. DOI: 10.1016/B978-0-12-815581-3.00001-4.

Shen, X., Shi, J., Cao, X., Zhang, X., Zhang, W., Wu, H. & Yao, Z., Real-World Exhaust Emissions and Fuel Consumption for Diesel Vehicles Fueled by Waste Cooking Oil Biodiesel Blends, Atm. Envi., 191, pp. 249-257, 2018. DOI: 10.1016/j.atmosenv.2018.08.004.

Wahyono, Y. & Hadiyanto, H., Life Cycle Assessment of Biodiesel Production from Crude Palm Oil: A Case Study of Three Indonesian Biodiesel Plants, In IOP Conf. Ser.: Ear. and Envi. Sci., 348, pp. 1-7, 2019. DOI: 10.1088/1755-1315/348/1/012002.

Hidayat, A., Enhancing Bioenergy Utilization to Improve Energy Security, Presentation at the Bioenergy Development Workshop in Indonesia, Jakarta, 2016.

Adewalea, A.H., Babaa, R.A. & Rilwanb, L.A., The Effects of Storage Time on Fuel Properties of Jatropha Biodiesel Blends, J. of Bio. and Biop., 3, pp. 101-106, 2018. DOI: 10.21967/jbb. v3i3.167.

Jain, S. & Sharma, M.P., Oxidation, Thermal, and Storage Stability Studies of Jatropha Curcas Biodiesel, Int. Sch. Res. Net. Ren. En., pp. 1-15, 2012. DOI: doi:10.5402/2012/861293.

Yang, Z., Hollebone, B.P., Wang, Z., Yang, C., Brown, C. & Landriault, M., Storage Stability of Commercially Available Biodiesels and Their Blends Under Different Storage Conditions, Fuel 115, pp. 366-377, 2014. DOI: 10.1016/j.fuel.2013.07.039.

Fernandes, D.M., Montes, R. H.O., Almeida, E.S., Nascimento, A.N., Oliveira, P.V., Richter, E.M. & Muz, R.A.A., Storage Stability and Corrosive Character of Stabilised Biodiesel Exposed to Carbon and Galvanised Steels, Fuel 107, pp. 609-614, 2013. DOI: 10.1016/j.fuel.2012.11.010.

McCormick, R.L. & Westbrook, S.R., Storage Stability of Biodiesel and Biodiesel Blends, En. Fu., 24, pp. 690-698, 2010. DOI: 10.1021/ef900878u

Cavalcantia, E.H.de S., Zimmer, A.R., Bento, F.M. & Ferr, M.F., Chemical and Microbial Storage Stability Studies and Shelf-Life Determinations of Commercial Brazilian Biodiesels Stored in Carbon Steel Containers in Subtropical Conditions, Fuel, 236, pp. 993-1007, 2019. DOI: 10.1016/j.fuel.2018.09.043

Bouaid, A., Martinez, M. & Aracil, J., Long Storage Stability of Biodiesel from Vegetable and Used Frying Oils, Fuel, 86, pp. 2596-2602, 2007. DOI: 10.1016/j.fuel.2007.02.014.

Jose, T. K. & Anand, K., Effects of Biodiesel Composition on Its Long-Term Storage Stability, Fuel, 177, pp. 190-196, 2016. DOI: 10.1016/j.fuel.2016.03.007.

Kassem, Y. & mur, H., Effects of Storage under Different Conditions on the Fuel Properties of Biodiesel Admixtures Derived from Waste Frying and Canola Oils, Bio. Conv. and Bioref., 8, pp. 825?845, 2018. DOI: 10.1007/s13399-018-0339-1.

Christensen, E. & McCormick, R.L., Long-Term Storage Stability of Biodiesel and Biodiesel Blends, Fu. Proc. Tech., 128, pp. 339-348, 2014. DOI: 10.1016/j.fuproc.2014.07.045

Kivevele, T., Storage and Thermal Stability of Biodiesel Produced from Manketti Nut Oil of Southern Africa Origin with the Influence of Metal Contaminants and Antioxidants, SN App. Sci., 2, pp. 1-10, 2020. DOI: 10.1007/s42452-020-2743-y.

Ashraful, A.M., Masjuki, H.H., Kalam, M.A., Rahman, S.M.A., Habibullah, M. & Syazwan, M., Study of the Effect of Storage Time on the Oxidation and Thermal Stability of Various Biodiesels and Their Blends, En. and Fu., 28, pp. 1081-1089, 2014a. DOI: 10.1021/ef402411v.

Jain S. & Sharma, M.P., Oxidation Stability of Blends of Jatropha Biodiesel with Diesel, Fuel, 90, pp. 3014-3020, 2011. DOI: 10.1016/j.fuel.2011.05.003.

Bondioli, P., Gasparoli, A., Della Bella, L., Tagliabue, S. & Toso, G., Biodiesel Stability under Commercial Storage Conditions Over One Year, Eu. J. of Li. Sci. and Tech., 105, pp. 735?741, 2003. DOI: 10.1002/ejlt.200300783.

Silviana, S. & Buchori, L., Biodiesel Storage Effect Based on CPO Biodiesel Degradation Studies, Reaktor 15, pp. 148-153, 2015. (Text in Indonesian)

Furlan, P.Y., Wetzel, P., Johnson, S., Wedin, J. & Och, A., Investigating the Oxidation of Biodiesel from Used Vegetable Oil by FTIR Spectroscopy: Used Vegetable Oil Biodiesel Oxidation Study by FTIR, Spec. Lett., 43, pp. 580-585, 2010. DOI: 10.1080/00387010.2010.510708.

Hadiyanto, H., Aini, A.P., Widayat, W., Kusmiyati, K., Budiman, A. & Rosyadi, A., Multi-Feedstock Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil, and Waste Cooking Oil, Int. J. of Ren. En. Dev., 9, pp. 119-123, 2020. DOI: 10.14710/ijred.9.1.119-123.

Qiu, F., Li, Y., Yang, D., Li, X. & Sun, P., Biodiesel Production from Mixed Soybean Oil and Rapeseed Oil, Applied Energy, 88, pp. 2050-2055, 2011. DOI: 10.1016/j.apenergy.2010.12.070.

AOCS Cd 3d-63, Sampling Analysis of Commercial Fats and Oils: Acid Value, 2009.

Badan Standarisasi Nasional, Standar Nasional Indonesia 7182:2015 Biodiesel (Indonesian National Standard 7182: 2015 Biodiesel). Indonesia, 1-88, 2015.

AOCS Ca 14-56, Total, Free and Combined. Glycerol Iodometric Method, 2011.

Sparkman, D.O., Penton, Z. & Kitson, F.G., Gas Chromatography and Mass Spectrometry: A Practical Guide, ISBN 978-0-08-092015-3. Academic Press, USA, 2011.

Griffiths, P. & de Hasseth, J.A., Fourier Transform Infrared Spectrometry (2nd ed.), Wiley-Blackwell, Canada, 2007.

Issariyakul, T., Kulkarni, M.G., Meher, L.C., Dalai, A.K. & Bakhshi, N.N., Biodiesel Production from Mixtures of Canola Oil and Used Cooking Oil, Ch. Eng. J., 140, pp. 77-85, 2008. DOI: 1016/j.cej.2007.09.008.

Barbosa, D.D.C., Serra, T.M., Meneghetti, S.M.P. & Meneghetti, M.R., Biodiesel Production by Ethanolysis of Mixed Castor and Soybean Oils, Fuel, 89, pp. 3791-3794, 2010. DOI: 10.1016/j.fuel.2010.07.016.

Meneghetti, S.M.P., Meneghetti, M.R., Wolf, C.R., Silva, E.C., Lima, G. E.S., Coimbra, M.de A., Soletti, J.I. & Carvalho, S.H.V., Ethanolysis of Castor and Cottonseed Oil: A Systematic Study Using Classical Catalysts, J. Am. Oil. Chem. Soc., 83, pp. 819-822, 2006. DOI: 10.1007/s11746-006-5020-3.

Alptekin, E. & Canakci, M., Determination of the Density and the Viscosities of Biodiesel-Diesel Fuel Blends, Ren. En., 33, pp. 2623-2630, 2008. DOI: 10.1016/j.renene.2008.02.020.

Leung, D.Y.C., Koo, B.C.P. & Guo, Y., Degradation of Biodiesel Under Different Storage Conditions, Bio. Tech., 97, pp. 250-256, 2006. DOI: 10.1016/j.biortech.2005.02.006.

Mittelbach, M. & Gangl, S., Long Storage Stability of Biodiesel Made from Rapeseed and Used Frying Oil, J. Am. Oil. Chem. Soc., 78, pp. 573-577, 2001. DOI: 10.1007/s11746-001-0306-z.

Obadiah, A., Kannan, R., Ramasubbu, A. & Kumar, S.V., Studies on the Effect of Antioxidants on the Long-Term Storage and Oxidation Stability of Pongamia Pinnata (L.) Pierre Biodiesel, Fuel Processing Technology, 99, pp. 56-63, 2012. DOI: 10.1016/j.fuproc.2012.01.032.

Jain, S. & Sharma, M.P., Stability of Biodiesel and its Blends: A Review, Ren. and Sus. En. Rev., 14, pp. 667-678, 2010. DOI: 10.1016/j.rser.2009. 10.011.

Hasenhuettl, G.L. & Hartel, R.W., Food Emulsifiers and Their Applications, Chapman and Hall, New York, 1997.

Waynick, J.A., Characterization of Biodiesel Oxidation and Oxidation Products, National Renewable Energy Laboratory, SwRI Project No. 08-10721, 2005.

Minami, E. & Saka, S., Kinetics of Hydrolysis and Methyl Esterification for Biodiesel Production in Two-Step Supercritical Methanol Process, Fuel, 85, pp. 2479-2483, 2006. DOI: 10.1016/j.fuel.2006.04.017.

Knothe, G., Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters, Fu. Pro. Tech., 86, pp. 1059-1070, 2005. DOI: 10.1016/j.fuproc.2004.11.002.

Mofijur, M., Masjuki, H.H., Kalam, M.A. & Atabani, A.E., Evaluation of Biodiesel Blending, Engine Performance and Emissions Characteristics of Jatropha Curcas Methyl Ester: Malaysian Perspective, Energy, 55, pp. 879-887, 2013. DOI: 10.1016/j.energy.2013.02.059.

Refaat, A.A., Correlation Between the Chemical Structure of Biodiesel and Its Physical Properties, Int. J. of Env. Sci. & Tech., 6, pp. 677-694, 2009. DOI: 10.1007/BF03326109.

Ashraful, A.M., Masjuki, H.H., Kalam, M.A., Rashedul, H.K., Sajjad, H. & Abedin, M.J., Influence of Anti-corrosion Additive on the Performance, Emission and Engine Component Wear Characteristics of an IDI Diesel Engine Fueled with Palm Biodiesel, En. Con. and Man., 87, pp. 48-57, 2014b. DOI: 10.1016/j.enconman.2014.06.093.

McCormick, R.L., Ratcliff, M., Moens, L. & Lawrence, R., Several Factors Affecting the Stability of Biodiesel in Standard Accelerated Tests, Fuel Processing Technology, 88, pp. 651-657, 2007. DOI: 10.1016/j.fuproc.2007.01.006.

Fadhil, A.B. & Abdulahad, W.S., Transesterification of Mustard (Brassica Nigra) Seed Oil with Ethanol: Purification of the Crude Ethyl Ester with Activated Carbon Produced from De-Oiled Cake, En. Con. and Man., 77, pp. 495-503, 2014. DOI: 10.1016/j.enconman.2013.10.008.

Al-dobouni, I.A., Fadhil, A.B. & Saeed, I.K., Optimized Alkali-Catalyzed Transesterification of Wild Mustard (Brassica Juncea L.) Seed Oil, En. Sou., Pa. A: Rec., Uti., and Env. Eff., 38, pp. 2319?2325, 2016. DOI: doi.org/10.1080/15567036.2014.1002952.

Fadhil, A.B. Ahmed, K.M. & Dheyab, M.M., Silybum Marianum L. Seed Oil: A Novel Feedstock for Biodiesel Production, Ar. J. of Ch. 10, pp. S683-S690, 2017. DOI: 10.1016/j.arabjc.2012.11.009.

Fadhil, A.B., Optimization of Transesterification Parameters of Melon Seed Oil, I. J. of Gr. En, 10, pp. 763-774, 2013. DOI: 10.1080/15435075. 2012.727200.

Saluja, R.K., Kumar, V. & Sham, R., Stability of Biodiesel ? A Review, Ren. and Sus. En. Rev., 62, pp. 866-881, 2016. 10.1016/j.rser.2016.05.001.

Downloads

Published

2022-05-20

How to Cite

Wahyono, Y., Hadiyanto, H., Budihardjo, M. A. ., Baihaqi, R. A. ., & Syahida, A. N. (2022). The Effects of Long-Term Storage on the Quality of Palm Oil Biodiesel and Canola Oil Biodiesel. Journal of Engineering and Technological Sciences, 54(3), 220301. https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.1

Issue

Section

Articles