Impact of Al on ZnO Electron Transport Layer in Perovskite Solar Cells


  • Nur Syafiqah Nadiah Mohd Alias Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Melaka, Malaysia
  • Faiz Arith Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Melaka, Malaysia
  • Ahmad Nizamuddin Mustafa Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Melaka, Malaysia
  • Mohd Muzafar Ismail Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Melaka, Malaysia
  • Nur Fatihah Azmi Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Melaka, Malaysia
  • Mohd Saifizi Saidon Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, 02600, Perlis, Malaysia



Al-doped ZnO, ETL, perovskite solar cell, power conversion efficiency, SCAPS 1D


Perovskite solar cells have shown remarkable performance and improvements in terms of solar cell efficiency. The ETL material is one of the important components in perovskite solar cells in conducting electrons to produce current. Here, ZnO was used as ETL material in a perovskite solar cell using the SCAPS 1D simulation software. The ZnO ETL showed poor cell efficiency due to its reaction with the perovskite material. A small amount of Al doped into ZnO was introduced to enhance the physiochemical properties of the ZnO against perovskite materials. Al concentrations were varied between 1 and 4 mol% to observe the effect on cell efficiency. Compared with a conventional ZnO ETL solar cell with 0 mol% Al perovskite, the Al-doped based solar cell showed better performance. Meanwhile, perovskite solar cells with 1 mol% Al-doping and appropriate layer thickness showed the best cell performance in improving the charge transport mechanism, resulting in increased cell efficiency. Thus, the parameters studied can be a guide in the fabrication process.


Download data is not yet available.


Noorasid, N. S., Arith, F., Firhat, A. Y., Mustafa, A.N. & Shah, A. S. M., SCAPS Numerical Analysis of Solid-State Dye-Sensitized Solar Cell Utilizing Copper (I) Iodide as Hole Transport Layer, Engineering Journal, 26(2), pp. 1-10, 2022.

Noorasid, N.S., Arith, F., Mustafa, A.N., Azam, M.A., Mahalingam, S., Chelvanathan, P. & Amin, N., Current Advancement of Flexible Dye Sensitized Solar Cell: A Review, Optik, 254C, 168089, 2022.

Aliyaselvam, O.V., Arith, F., Rong, I.J., Zin, S.I., Ali, F.A. & Mustafa, A.N., Facile Synthesis of Copper Iodide at Low Temperature as Hole Transporting Layer for Perovskite Solar Cell, International Journal of Renewable Energy Research-IJRER, 12(2), 2022.

Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. & Snaith, H.J., Efficient Hybrid Solar Cells based on Meso-superstructured Organometal Halide Perovskites, Science, 338(6107), pp. 643-7, 2012.

Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S. M., Choi, M. & Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide, Journal of the American Chemical Society, 137(27), pp. 8696-8699, 2015.

Nizamuddin, A., Arith, F., Rong, I.J., Zaimi, M., Rahimi, A.S. & Saat, S., Investigation of Copper(I)Thiocyanate (CuSCN) as a Hole Transporting Layer for Perovskite Solar Cells Application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(2), pp. 153-159, 2021.

Aliyaselvam, O.V., Arith, F., Mustafa, A.N., M.K.N. & Al-Ani, O., Solution Processed of Solid State HTL of CuSCN Layer at Low Annealing Temperature for Emerging Solar Cell, International Journal of Renewable Energy Research-IJRER, 11(2), 2021.

Jeong, M., Choi, I.W., Go, E.M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H.W., Lee, J., Bae, J.H., Kwak, S.K., Kim, D.S. & Yang, C., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss, Science, 369(6511), pp.1615 - 1620, 2020.

Oxford PV Hits New World Record for Solar Cell, (21 Dec 2020)

Meriam Suhaimy, S.H., Ghazali, N., Arith, F. & Fauzi, B., Enhanced Simazine Herbicide Degradation by Optimized Fluoride Concentrations in TiO2 Nanotubes Growth, Optik, 212, p. 164651, 2020.

Alias, N.S.N.M., Arith, F., Mustafa, A.N.M., Ismail, M.M., Chachuli, S. A.M. & Shah, A.S.M, Compatibility of Al-doped ZnO Electron Transport Layer with Various HTLs and Absorbers in Perovskite Solar Cells, Applied Optics, 61, pp. 4535-4542, 2022.

Tseng, Z.L., Chiang, C.H., Chang, S.H. & Wu, C.G., Surface Engineering of ZnO Electron Transporting Layer via Al Doping for High Efficiency Planar Perovskite Solar Cells, Nano Energy, 2016.

Ouslimane, T., Et-taya, L., Elmaimouni, L. & Benami, A., Impact of Absorber Layer Thickness, Defect Density, and Operating Temperature on the Performance of MAPbI3 Solar Cells based on ZnO Electron Transporting Material, Heliyon, 7, e06379, 2021.

Et-taya, L., Ouslimane, T. & Benami, A., Numerical Analysis of Earth-abundant Cu2ZnSn(SxSe1-x)4 Solar Cells based on Spectroscopic Ellipsometry Results by using SCAPS-1D, Sol. Energy, 201, pp. 827?835, 2020.

Ahmed, S., Jannat, F., Khan, M.A.K. & Alim, M.A., Numerical Development of Eco-friendly Cs2TiBr6 based Perovskite Solar Cell with All-Inorganic Charge Transport Materials via SCAPS-1D, Optik, 225, 165765, 2021.

Rahman, M.M., Khan, M.K.R., Islam, M.R., Halim, M.A., Shahjahan, M., Hakim, M.A., Saha, D.K. & Khan, J.U., Effect of Al Doping on Structural, Electrical, Optical and Photoluminescene Properties of Nano-Structural ZnO Thin Films, J. Mater. Sci. Technol., 28(4), pp.329-335, 2011.

Bhoomanee, C., Ruankhama, P., Choopun, S., Prathan, A. & Wongratanaphisan, D., Effect of Al-doped ZnO for Electron Transporting Layer in Planar Perovskite solar cells, Materials Today: Proceedings, 17(4), pp. 1259-1267, 2019.

Burgelman, M., Verschraegen, J., Minnaert, B. & Marlei, J., Numerical Simulation of Thin Film Solar Cells: Practical Exercises with SCAP, Numos Workshop, 2007.

Aseena, S., Abraham, N. & Suresh Babu, V., Optimization of Layer Thickness of ZnO based Perovskite Solar Cells using SCAPS 1D, Materials Today: Proceedings, 43(6), pp. 3432-3437, 2020.

Du, H.J., Wang, W.C. & Zhu, J.Z., Device simulation of Lead-free CH3NH3SnI3 Perovskite Solar Cells with High Efficiency, Chinese Physics B, 25(10), 108802, 2016.

Hossain, M.I., Alharbi, F.H. & Tabet, N., Copper Oxide as Inorganic Hole Transport Material for Lead Halide Perovskite based Solar Cells, Solar Energy 120, pp. 370-380, 2015.

Anwar, F., Mahbub, R., Satter, S.S. & Ullah, S.M., Effect of Different HTM layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance, International Journal of Photoenergy, 2017.

Correa-Baena, J.-P., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacobsson, T.J., Calvo, M.E, Abate, A., Grzel, M., Muez, H. & Hagfeldt, A., Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement, Advanced Materials, 28(5031), 7, 2016.

Mahmood, A., Munir, T., Fakhar-e-Alam, M., Atif, M., Shazad, K., Alimgeer, K.S., Nguyen Gia, T., Ahmad, H. & Ahmad, S., Analyses of Structural and Electrical Properties of Aluminium Doped ZnO-NPs by Experimental and Mathematical Approaches, Journal of King Saud University - Science, 34(2), 101796, 2022.

Liangsheng, H., Tong, L., Xinxia, M., Jiang, W., Lingxia, Q., Xuefei, W., Guoyu, H., Haonan, P., Xingbo, W. & Xiaoyu, Z., A Tin-Based Perovskite Solar Cell with an Inverted Hole-Free Transport Layer to Achieve High Energy Conversion Efficiency by SCAPS Device Simulation, Research Square, 2021.

Slami, A., Bouchaour, M. & Merad, L., Comparative Study of Modeling of Perovskite Solar Cell with Different HTM Layers, International Journal of Materials, 7, pp. 1-5, 2020. DOI: 10.46300/91018.2020.7.1.

Noorasid, N.S., Arith, F., Mustafa, A.N., Azam, M.A., Suhaimy, S.H.M. & Al-Ani, O., Effect of Low Temperature Annealing on Anatase TiO2 Layer as Photoanode for Dye-Sensitized Solar Cell. Przeglad Elektrotechniczny, 10, pp. 12-16, 2021.

Alexandrov, A., Zvaigzne, M., Lypenko, D., Nabiev, I. & Samokhvalov, P., Al-, Ga-, Mg-, or Li-doped Zinc Oxide Nanoparticles as Electron Transport Layers for Quantum Dot Light-Emitting Diodes, Sci Rep, 10, 7496, 2020.

Nine, K.B., Hossain, M.F. & Mahmood, S.A., Analysis of Stable, Environment Friendly and Highly Efficient Perovskite Solar Cell, TENCON 2019-2019 IEEE Region 10 Conference (TENCON), pp. 1825-1828, 2019.




How to Cite

Mohd Alias, N. S. N., Arith, F., Mustafa, A. N., Ismail, M. M., Azmi, N. F., & Saidon, M. S. (2022). Impact of Al on ZnO Electron Transport Layer in Perovskite Solar Cells. Journal of Engineering and Technological Sciences, 54(4), 220409.