Partial Hydrogenation of Calophyllum Inophyllum Methyl Esters to Increase the Oxidation Stability

Authors

  • Joelianingsih Joelianingsih Chemical Engineering Study Program, Institut Teknologi Indonesia, Jalan Raya Puspitek, Serpong, Tangerang Selatan 15320
  • P. Putra Chemical Engineering Study Program, Institut Teknologi Indonesia, Jalan Raya Puspitek, Serpong, Tangerang Selatan 15320
  • A.W. Hidayat Chemical Engineering Study Program, Institut Teknologi Indonesia, Jalan Raya Puspitek, Serpong, Tangerang Selatan 15320
  • R. Fajar Center for Thermodynamics Motor and Propulsion System, BPP Teknologi, Gdg 230 Kawasan Puspiptek Serpong, Tangerang Selatan 15314

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2015.47.5.4

Abstract

Calophyllum inophyllum methyl esters have a low oxidation stability value (5-6 h) caused by high amounts of polyunsaturated fatty acid methyl esters (FAME), especially methyl linoleate. Partial hydrogenation was done to reduce the number of polyunsaturated FAME to transform them into mono-unsaturated. This was performed at 6 bar and 900 rpm with Pd/Al2O3 solid catalyst in a reactor with a capacity of 1 liter. The research purpose was to learn the effects of reaction temperature (80; 100; 120C) and time (1; 1.5; 2 h) on the FAME composition. The optimum condition of the experiment was obtained at 120C for 1 h, with 15.47 h as the oxidation stability value, 17.8C as the cloud point value, and 51.17 as the cetane number. Under this condition, the methyl linoleate content decreased by 59.89% w/w (from 21.869% to 8,770% w/w) and methyl
linoleate hydrogenated into methyl elaidate. Meanwhile, the methyl linolenate content decreased by 85,37% w/w (from 0.205% to 0.030% w/w) and methyl linolenate hydrogenated into methyl linolelaidate. These results show that the research met the following standards: a minimum oxidation stability value of 10 h in accordance with the World Wide Fuel Charter (WWFC) 2009, a maximum cloud point value of 18C and a minimum cetane number 51 in accordance with SNI 7182-2012. The physical properties values of the Calophyllum inophyllum methyl esters were predicted using the empirical equations.

Downloads

Download data is not yet available.

References

Benchmarking of Biodiesel Fuel Standardization in East Asia Working Group 2010, Biodiesel Fuel Quality, in Goto, S., Oguma, M., and Chollacoop, N. EAS-ERIA Biodiesel Fuel Trade Handbook: 2010, Jakarta: ERIA, pp. 27-62, 2010.

World Wide Fuel Charter (WWFC) 2009, Biodiesel Guidelines, Fuels and Lubricants Committee Japan Automobile Manufacturers Association, Available from: http://www.truckandenginemanufacturers.org/file.asp? A=Y&F=20090326+B100+Guideline+Final.pdf&N=20090326+B100+Guideline+Final.pdf&C=documents (7 December 2011)

Bustomi, S., Rostiwati, T., Sudradjat, R., Leksono, B., Kosasih, A.S., Anggraeni, I., Syamsuwida, D., Lisnawati,Y., Mile, Y., Djaenudin, D., Mahfudz & Rachman, E., Nyamplung (Calophyllum inophyllum L) , Sumber Energi Biofuel yang Potensial, Badan Litbang Kehutanan. Jakarta, 2008.

Hadi, W.A., Pemanfaatan Minyak Biji Nyamplung (Calophylluminophyllum L) sebagai Bahan Bakar Minyak Pengganti Solar, Jurnal Riset Daerah, 8(2), 2009.

Goto, S., Oguma, M. & Chollacoop, N., EAS-ERIA Biodiesel Fuel Trade Handbook, Economic Research Institute for Asean and East Asia, Jakarta, p.196, 2010.

Prakoso, T., Udomsap, P., Tanaka, A., Hirotsu, T. & Goto, S., Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants, ITB J. Eng. Sci., 44(3), pp. 303-318, 2012.

Wadumesthrige, K., Salley, S.O. & Ng, K.Y.S., Fuel Processing Technology, 90, pp. 1292-1299, 2009.

Fajar, R., Sugiarto, B. & Prawoto, Predicting Fuel Properties of Partially Hydrogenated Jatropha Methyl Ester: Used for Biodiesel Formulation to Meet the Fuel Specification for Automobile and Engine Manufacturer, Kasetsart J. (Nat. Sci.), 46, pp. 629-637, 2012.

Tambun, R., Buku Ajar Teknologi Oleokimia, Hibah Kompetisi Konten Mata Kuliah E-Learning USU-Inherent, 2006.

Chen, Y.H., Chen, J.H. & Luo, Y.M., Property Modification of Jatropha Oil Biodiesel by Blending with Other Biodiesels or Adding Antioxidants. Energy, 36, pp. 4415-4421, 2011.

Sarin, A., Arora, R., Singh, N.P., Sarin, R., Malhotra, R.K. & Kundu, K., Effect of Blends of Palm-Jatropha-Pongamia Biodiesels on Cloud Point and Pour Point, Energy, 34, pp. 2016-2021, 2009.

Su, Y.C., Liu, Y.A., Diaz-Tovar, C.A. & Gani, R., Selection of Prediction Methods for Thermo-physical Properties for Process Modeling and Product Design of Biodiesel Manufacturing, Ind. Eng. Chem. Res., 50, pp. 6809-6836, 2011.

Clements, L.D., Blending Rule for Formulating Biodiesel Fuel, www.angelfire.com/ks3/go_diesel/files042803/gen-277.pdf (8 July 2013)

Bamgboye, A.I. & Hansen, A.C., Prediction of Cetane Number of Biodiesel Fuel From the Fatty Acid Methyl Ester (FAME) Composition, Int. Agrophysics, 22, pp. 21-29, 2008.

Downloads

Published

2015-10-30

How to Cite

Joelianingsih, J., Putra, P., Hidayat, A., & Fajar, R. (2015). Partial Hydrogenation of Calophyllum Inophyllum Methyl Esters to Increase the Oxidation Stability. Journal of Engineering and Technological Sciences, 47(5), 508-521. https://doi.org/10.5614/j.eng.technol.sci.2015.47.5.4

Issue

Section

Articles