A Review on Zeolite Application for Aromatic Production from Non-Petroleum Carbon-Based Resources


  • I. G. B. N. Makertihartha Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
  • Noerma Juli Azhari ITB
  • Grandprix T.M. Kadja Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia; c. Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia




aromatics, benzene, toluene, xylene (BTX), non-petroleum carbon-based resource, zeolite


The application of zeolite catalyst has been expanded to support on-purpose sustainable technology. This review focused on zeolite application to produce aromatic compounds from non-petroleum carbon-based resources, including methanol, CO2, CO, and biomass. For COx resources, the two main routes for producing aromatics products are discussed, i.e., the olefinic and the oxygenates-mediated route. Moreover, several improvement strategies for enhancing catalytic performance are also discussed, i.e., the addition of metal components, tuning the metal and zeolite structure, and modifying the reaction process. Finally, prospects for future development are formulated.


Download data is not yet available.


Li, T., Shoinkhorova, T., Gascon, J. & Ruiz-Martinez, J., Aromatics Production via Methanol-Mediated Transformation Routes, ACS Catal., 11, pp. 7780?7819, 2021. doi:10.1021/acscatal.1c01422.

Perego, C. & Pollesel, P., Advances in Aromatics Processing Using Zeolite Catalysts. In Advances in Nanoporous Materials, Elsevier, 1, pp. 97-149, 2010. doi:10.1016/S1878-7959(09)00102-9.

Huang, M., Xu, J., Ma, Z., Yang, Y., Zhou, B. & Wu, C., Bio-BTX Production from the Shape Selective Catalytic Fast Pyrolysis of Lignin Using Different Zeolite Catalysts: Relevance between the Chemical Structure and the Yield of Bio-BTX, Fuel Process. Technol., 216, 106792, 2021. doi: 10.1016/j.fuproc.2021.106792.

Mruthyunjaya, V., Catalysis for Bio-BTX (Benzene, Toluene, and Xylene) Synthesis, in Advanced Catalysis for Drop-in Chemicals, Elsevier, pp. 223?256, 2022. doi:10.1016/B978-0-12-823827-1.00003-1.

Gong, Q., Fang, T., Xie, Y., Zhang, R., Liu, M., Barzagli, F., Li, J., Hu, Z., & Zhu, Z., High-Efficiency Conversion of Methanol to BTX Aromatics over a Zn-Modified Nanosheet-HZSM-5 Zeolite, Ind. Eng. Chem. Res., 60, pp. 1633?1641, 2021. doi: 10.1021/acs.iecr.0c06342.

Shoinkhorova, T., Cordero-Lanzac, T., Ramirez, A., Chung, S.H., Dokania, A., Ruiz-Martinez, J. & Gascon, J., Highly Selective and Stable Production of Aromatics via High-Pressure Methanol Conversion, ACS Catal. 11, pp.3602?3613, 2021. doi:10.1021/acscatal.0c05133.

Zhang, Z., Cheng, H., Chen, H., Li, J., Chen, K., Lu, X., Ouyang, P. & Fu, J., Catalytic Fast Pyrolysis of Rice Straw to Aromatics over Hierarchical HZSM-5 Treated with Different Organosilanes.,Energy and Fuels, 33, pp. 307-312, 2019. doi: 10.1021/acs.energyfuels.8b03213.

Zhang, Z., Cheng, H., Chen, H., Chen, K., Lu, X., Ouyang, P. & Fu, J., Enhancement in the Aromatic Yield from the Catalytic Fast Pyrolysis of Rice Straw over Hexadecyl Trimethyl Ammonium Bromide Modified Hierarchical HZSM-5, Bioresour. Technol., 256, pp. 241?246, 2018. doi: 10.1016/j.biortech.2018.02.036.

Cheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., Pan, Y., Wen, W. & Wang, Y., Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability, Chem, 3, pp. 334?347, 2017. doi: 10.1016/j.chempr.2017.05.007.

Huang, Z., Wang, S., Qin, F., Huang, L., Yue, Y., Hua, W., Qiao, M., He, H., Shen, W. & Xu, H., Ceria-Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics, ChemCatChem, 10, pp. 4519-4524, 2018. doi:10.1002/cctc.201800911.

Azhari, N.J., Nurdini, N., Mardiana, S., Ilmi, T., Fajar, A.T.N., Makertihartha, I G.B.N., Subagjo & Kadja, G.T.M, Zeolite-Based Catalyst for Direct Conversion of CO2 to C2+ Hydrocarbon: A Review, J. CO2 Util. 59, 101969, 2022. doi: 10.1016/j.jcou.2022.101969.

Dai, C., Zhao, X., Hu, B., Zhang, J., Hao, Q., Chen, H., Guo, X. & Ma, X., Hydrogenation of CO2 to Aromatics over Fe-K/Alkaline Al2O3and P/ZSM-5 Tandem Catalysts, Ind. Eng. Chem. Res., 59, pp.19194-19202, 2020. doi: 10.1021/acs.iecr.0c03598.

Firmansyah, M.L., Jalil, A.A., Triwahyono, S., Hamdan, H., Salleh, M.M., Ahmad, W.F.W. & Kadja, G.T.M., Synthesis and Characterization of Fibrous Silica ZSM-5 for Cumene Hydrocracking, Catal. Sci. Technol., 6, 5178?5182, 2016. doi:10.1039/c6cy00106h.

Puspitasari, T., Ilmi, M.M., Nurdini, N., Mukti, R.R., Radiman, C.L., Darwis, D. & Kadja, G.T.M., The Physicochemical Characteristics of Natural Zeolites Governing the Adsorption of Pb2+ from Aqueous Environment, Key Eng. Mater, 811 KEM, pp. 92?98, 2019. doi: 10.4028/www.scientific.net/KEM.811.92.

Wardani, M.K., Kadja, G.T.M., Fajar, A.T.N., Subagjo, Makertihartha, IGBN, Gunawan, M.L., Suendo, V. & Mukti, R.R., Highly Crystalline Mesoporous SSZ-13 Zeolite Obtained via Controlled Post-Synthetic Treatment. RSC Adv., 9, pp. 77-86, 2019. doi:10.1039/C8RA08979E.

Puspitasari, T., Kadja, G.T.M., Radiman, C.L., Darwis, D. & Mukti, R.R., Two-Step Preparation of Amidoxime-Functionalized Natural Zeolites Hybrids for the Removal of Pb2+ Ions in Aqueous Environment, Mater. Chem. Phys. 216, pp. 197-205, 2018. doi: 10.1016/j.matchemphys.2018.05.083.

Yulizar, Y., Kadja, G.T.M. & Safaat, M., Well-Exposed Gold Nanoclusters on Indonesia Natural Zeolite: A Highly Active and Reusable Catalyst for the Reduction of p-Nitrophenol, React. Kinet. Mech. Catal., 117, pp. 353?363, 2016. doi:10.1007/s11144-015-0916-2.

Wang, X., Yang, G., Zhang, J., Song, F., Wu, Y., Zhang, T., Zhang, Q., Tsubaki, N. & Tan, Y., Macroscopic Assembly Style of Catalysts Significantly Determining Their Efficiency for Converting CO2 to Gasoline, Catal. Sci. Technol., 9, pp. 5401-5412, 2019. doi:10.1039/c9cy01470e.

Zhang, Q., Yu, J. & Corma, A., Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Adv. Mater., 32, pp. 1-31, 2020. doi:10.1002/adma.202002927.

Mardiana, S., Azhari, N.J., Ilmi, T. & Kadja, G.T.M., Hierarchical Zeolite for Biomass Conversion to Biofuel: A Review. Fuel., 309, pp. 122119, 2022. doi: 10.1016/j.fuel.2021.122119.

Makertihartha, I.G.B.N., Kadja, G.T.M., Gunawan, M.L., Mukti, R.R. & Subagjo, Exceptional Aromatic Distribution in the Conversion of Palm-Oil to Biohydrocarbon Using Zeolite-Based Catalyst, J. Eng. Technol. Sci., 52, pp. 584-597, 2020. doi: 10.5614/j.eng.technol.sci.2020.52.4.9.

Qiao, J., Wang, J., Frenkel, A.I., Teng, J., Chen, X., Xiao, J., Zhang, T., Wang, Z., Yuan, Z. & Yang, W., Methanol to Aromatics: Isolated Zinc Phosphate Groups on HZSM-5 Zeolite Enhance BTX Selectivity and Catalytic Stability, RSC Adv., pp. 5961-5971, 2020. doi:10.1039/c9ra09657d.

Xu, X., Liu, Y., Zhang, F., Di, W. & Zhang, Y., Clean Coal Technologies in China Based on Methanol Platform. Catal. Today, 298, pp. 61-68, 2017, doi: 10.1016/j.cattod.2017.05.070.

Tian, P., Wei, Y., Ye, M. & Liu, Z., Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catal. 5, pp. 1922-1938, 2015. doi:10.1021/acscatal.5b00007.

Yarulina, I., Goetze, J., Gener, C., van Thiel, L., Dikhtiarenko, A., Ruiz-Martinez, J., Weckhuysen, B.M., Gascon, J. & Kapteijn, F., Methanol-to-Olefins Process over Zeolite Catalysts with DDR Topology: Effect of Composition and Structural Defects on Catalytic Performance, Catal. Sci. Technol., 6, pp. 2663-2678, 2016. doi:10.1039/C5CY02140E.

Mirshafiee, F., Khoshbin, R. & Karimzadeh, R. A Green Approach for Template Free Synthesis of Beta Zeolite Incorporated in ZSM-5 Zeolite to Enhance Catalytic Activity in MTG Reaction: Effect of Seed Nature and Temperature. J. Clean. Prod. 361, 132159, 2022. doi:10.1016/j.jclepro.2022.132159.

Conte, M., Lopez-sanchez, J.A., He, Q., Morgan, D.J., Ryabenkova, Y., Bartley, J.K., Carley, A.F., Taylor, S.H., Kiely, C.J. & Hutchings, G.J. Modified Zeolite ZSM-5 for the Methanol to Aromatics Reaction, Catal. Sci. Technol., 2, pp. 105-112, 2012. doi:10.1039/c1cy00299f.

Zhang, G.Q., Bai, T., Chen, T.F., Fan, W.T. & Zhang, X., Conversion of Methanol to Light Aromatics on Zn-Modified Nano-HZSM-5 Zeolite Catalysts. Ind. Eng. Chem. Res., 53, pp. 14932-14940, 2014. doi:10.1021/ie5021156.

Wang, K., Dong, M., Niu, X., Li, J., Qin, Z., Fan, W. & Wang, J., Highly Active and Stable Zn/ZSM-5 Zeolite Catalyst for the Conversion of Methanol to Aromatics: Effect of Support Morphology, Catal. Sci. Technol. 8, pp. 5646-5656, 2018. doi:10.1039/c8cy01734d.

Weber, J.L., Martez del Monte, D., Beerthuis, R., Dufour, J., Martos, C., de Jong, K.P. & de Jongh, P.E., Conversion of Synthesis Gas to Aromatics at Medium Temperature with a Fischer Tropsch and ZSM-5 Dual Catalyst Bed, Catal. Today, 369, pp. 175-183, 2021. doi: 10.1016/j.cattod.2020.05.016.

Yang, T., Cheng, L., Li, N. & Liu, D., Effect of Metal Active Sites on the Product Distribution over Composite Catalysts in the Direct Synthesis of Aromatics from Syngas, Ind. Eng. Chem. Res., 56, pp. 11763-11772, 2017. doi: 10.1021/acs.iecr.7b03450.

Zhou, W., Shi, S., Wang, Y., Zhang, L., Wang, Y., Zhang, G., Min, X., Cheng, K., Zhang, Q., Kang, J. & Wang Y., Selective Conversion of Syngas to Aromatics over a Mo?ZrO2 /H-ZSM-5 Bifunctional Catalys,. ChemCatChem, 11, pp.1681-1688, 2019. doi:10.1002/cctc.201801937.

Nezam, I., Zhou, W., Gusm, G.S., Realff, M.J., Wang, Y., Medford, A.J. & Jones, C.W., Direct Aromatization of CO2 via Combined CO2 hydrogenation and Zeolite-Based Acid Catalysis. J. CO2 Util., 45, 2021. doi: 10.1016/j.jcou.2020.101405.

Xu, Y., Wang, T., Shi, C., Liu, B., Jiang, F. & Liu, X., Experimental Investigation on the Two-Sided Effect of Acidic HZSM-5 on the Catalytic Performance of Composite Fe-Based Fischer-Tropsch Catalysts and HZSM-5 Zeolite in the Production of Aromatics from CO2/H2, Ind. Eng. Chem. Res., 59, 8581-8591, 2020. doi: 10.1021/acs.iecr.0c00992.

Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., Abou-Hamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K., Speybroeck, V. & Gascon, J., Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics, ACS Catal. 9, pp. 6320-6334, 2019. doi:10.1021/acscatal.9b01466.

Boronat, M. & Corma, A. Factors Controlling the Acidity of Zeolites. Catal. Letters, 145, pp. 162-172, 2015. doi:10.1007/s10562-014-1438-7.

Gao, W., Guo, L., Wu, Q., Wang, C., Guo, X., He, Y., Zhang, P., Yang, G., Liu, G., Wu, J. & Tsubaki N., Capsule-like Zeolite Catalyst Fabricated by Solvent-Free Strategy for Para-Xylene Formation from CO2 Hydrogenation, Appl. Catal. B Environ, 303, 120906, 2022. doi: 10.1016/j.apcatb.2021.120906.

Wang, T., Yang, C., Gao, P., Zhou, S., Li, S., Wang, H. & Sun, Y., ZnZrOx Integrated with Chain-like Nanocrystal HZSM-5 as Efficient Catalysts for Aromatics Synthesis from CO2 Hydrogenation. Appl. Catal. B Environ, 286, 119929, 2021. doi: 10.1016/j.apcatb.2021.119929.

Yu, Y., Li, X., Su, L., Zhang, Y., Wang, Y. & Zhang, H., The Role of Shape Selectivity in Catalytic Fast Pyrolysis of Lignin with Zeolite Catalysts. Appl. Catal. A Gen., 447-448, pp. 115-123, 2012. doi: 10.1016/j.apcata.2012.09.012.

Ding, K., Zhong, Z., Wang, J., Zhang, B., Addy, M. & Ruan, R., Effects of Alkali-Treated Hierarchical HZSM-5 Zeolites on the Production of Aromatic Hydrocarbons from Catalytic Fast Pyrolysis of Waste Cardboard, J. Anal. Appl. Pyrolysis, 125, pp. 153-161, 2017. doi: 10.1016/j.jaap.2017.04.006.

Qiao, K., Shi, X., Zhou, F., Chen, H., Fu, J., Ma, H. & Huang, H., Catalytic Fast Pyrolysis of Cellulose in a Microreactor System Using Hierarchical Zsm-5 Zeolites Treated with Various Alkalis, Appl. Catal. A Gen., 547, pp. 274-282, 2017. doi: 10.1016/j.apcata.2017.07.034.

Bi, Y., Lei, X., Xu, G., Chen, H. & Hu, J., Catalytic Fast Pyrolysis of Kraft Lignin over Hierarchical HZSM-5 and H? Zeolites. Catalysts, 8, 2018. doi:10.3390/catal8020082.

Che, Q., Yang, M., Wang, X., Yang, Q., Chen, Y., Chen, X., Chen, W., Hu, J., Zeng, K., Yang, H. & Chen H., Preparation of Mesoporous ZSM-5 Catalysts Using Green Templates and Their Performance in Biomass Catalytic Pyrolysis, Bioresour. Technol., 289, 121729, 2019. doi:10.1016/j.biortech.2019.121729.

Cheng, Y.T., Wang, Z., Gilbert, C.J., Fan, W. & Huber, G.W., Production of P-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings, Angew. Chemie - Int. Ed., 51, pp.11097-11100, 2012. doi:10.1002/anie.201205230.

Cheng, Y.T., Jae, J., Shi, J., Fan, W. & Huber, G.W., Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts, Angew. Chemie - Int. Ed., 51, pp. 1387-1390, 2012. doi:10.1002/anie.201107390.

Che, Q., Yang, M., Wang, X., Yang, Q., Rose Williams, L., Yang, H., Zou, J., Zeng, K., Zhu, Y., Chen, Y. & Chen H., Influence of Physicochemical Properties of Metal Modified ZSM-5 Catalyst on Benzene, Toluene and Xylene Production from Biomass Catalytic Pyrolysis, Bioresour. Technol., 278, pp. 248-254, 2019. doi: 10.1016/j.biortech.2019.01.081.

Magh?rah, A., Ilmi, M.M., Fajar, A.T.N. & Kadja, G.T.M., A Review on the Green Synthesis of Hierarchically Porous Zeolite. Mater. Today Chem., 17, 2020. doi: 10.1016/j.mtchem.2020.100348.

Kadja, G.T.M., Azhari, N.J., Mukti, R.R. & Khalil, M., A Mechanistic Investigation of Sustainable Solvent-Free, Seed-Directed Synthesis of ZSM-5 Zeolites in the Absence of an Organic Structure-Directing Agent, ACS Omega, 6, pp. 925-933, 2021. doi:10.1021/acsomega.0c05070.

Kadja, G.T.M., Rukmana, M.D., Mukti, R.R., Mahyuddin, M.H., Saputro, A.G. & Wungu, T.D.K., Solvent-Free, Small Organic Lactam-Assisted Synthesis of ZSM-5 Zeolites, Mater. Lett., 290, 129501, 2021. doi: 10.1016/j.matlet.2021.129501.

Xu, Y., Liu, J., Wang, J., Ma, G., Lin, J., Yang, Y., Li, Y., Zhang, C. & Ding, M., Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catal., 9, pp. 5147-5156, 2019. doi:10.1021/acscatal.9b01045.

Tian, G., Liu, X., Zhang, C., Fan, X., Xiong, H., Chen, X., Li, Z., Yan, B., Zhang, L., Wang, N., Peng H.-J. & Wei, F., Accelerating Syngas-to-Aromatic Conversion via Spontaneously Monodispersed Fe in ZnCr2O4 Spinel, Nat. Commun. 13, 5567, 2022. doi:10.1038/s41467-022-33217-9.

Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W. & Liu, Z., Selective Conversion of CO2 and H2 into Aromatics, Nat. Commun., 9, pp. 1-7, 2018. doi:10.1038/s41467-018-05880-4.

Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S. & Li, C., Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts, Joule, 3, pp. 570-583, 2019. doi: 10.1016/j.joule.2018.10.027.

Zhou, C., Shi, J., Zhou, W., Cheng, K., Zhang, Q., Kang, J. & Wang, Y., Highly Active ZnO ? ZrO 2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide, ACS Catal., 10, pp. 302?310, 2020. doi: 10.1021/acscatal.9b04309.

Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., Zhang, G., Song, C. & Guo, X., Utilization of CO2 for Aromatics Production over ZnO/ZrO2-ZSM-5 Tandem Catalyst, J. CO2 Util., 29, pp. 140-145, 2019. doi: 10.1016/j.jcou.2018.12.002.

Zhang, J., Zhang, M., Chen, S., Wang, X., Zhou, Z., Wu, Y., Zhang, T., Yang, G., Han, Y. & Tan, Y., Hydrogenation of CO2 into Aromatics over a ZnCrO: X-Zeolite Composite Catalyst, Chem. Commun., 55, pp. 973-976, 2019. doi:10.1039/c8cc09019j.

Cui, X., Gao, P., Li, S., Yang, C., Liu, Z., Wang, H., Zhong, L. & Sun, Y., Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation, ACS Catal. 9, pp. 3866-3876, 2019. doi:10.1021/acscatal.9b00640.

Wang, Y., Kazumi, S., Gao, W., Gao, X., Li, H., Guo, X., Yoneyama, Y., Yang, G. & Tsubaki, N., Direct Conversion of CO2 to Aromatics with High Yield via a Modified Fischer-Tropsch Synthesis Pathway, Appl. Catal. B Environ., 269, 118792, 2020. doi: 10.1016/j.apcatb.2020.118792.

Song, G., Li, M., Yan, P., Nawaz, M.A. & Liu, D., High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3Catalyst Integrated with HZSM-5, ACS Catal., 10, pp. 11268-11279, 2020. doi:10.1021/acscatal.0c02722.

Wei, J., Yao, R., Ge, Q., Xu, D., Fang, C., Zhang, J., Xu, H. & Sun, J., Precisely Regulating Brsted Acid Sites to Promote the Synthesis of Light Aromatics via CO2 Hydrogenation, Appl. Catal. B Environ., 283, 119648, 2021. doi: 10.1016/j.apcatb.2020.119648.

Song, G., Li, M., Xu, L., Yang, X., Nawaz, M.A., Yuan, H., Zhang, Z., Xu, X. & Liu, D., Tuning the Integration Proximity between Na Promoter and FeMnOxCoupled with Rationally Modified HZSM-5 to Promote Selective CO2 Hydrogenation to Aromatics, Ind. Eng. Chem. Res., 61, pp. 6820-6830, 2022. doi: 10.1021/acs.iecr.2c00647.

Yang, X., Song, G., Li, M., Chen, C., Wang, Z., Yuan, H., Zhang, Z. & Liu, D., Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation over nNa-Cu-Fe2O3/HZSM-5. Ind. Eng. Chem. Res. 2022. doi: 10.1021/acs.iecr.2c00622.

Chen, H., Cheng, H., Zhou, F., Chen, K., Qiao, K., Lu, X., Ouyang, P. & Fu, J., Catalytic Fast Pyrolysis of Rice Straw to Aromatic Compounds over Hierarchical HZSM-5 Produced by Alkali Treatment and Metal-Modification, J. Anal. Appl. Pyrolysis, 131, pp. 76-84, 2018. doi: 10.1016/j.jaap.2018.02.009.

Neumann, G.T. & Hicks, J.C., Novel Hierarchical Cerium-Incorporated MFI Zeolite Catalysts for the Catalytic Fast Pyrolysis of Lignocellulosic Biomass, ACS Catal., 2, pp. 642-646, 2012. doi:10.1021/cs200648q.




How to Cite

Makertihartha, I. G. B. N. ., Azhari, N. J. ., & Kadja, G. T. (2023). A Review on Zeolite Application for Aromatic Production from Non-Petroleum Carbon-Based Resources. Journal of Engineering and Technological Sciences, 55(2), 131-142. https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.3




Most read articles by the same author(s)