The Effect of Coconut Powder on Asphalt Binder Performance under Laboratory Conditions
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.5.7Keywords:
Coconut husk Powder; modified asphalt; modifier; rheological properties; rotational viscosity.Abstract
Bituminous concrete mixture is the most widely used structural layer in flexible pavements. The surface layer of the paving is exposed to repeated loads in addition to changes in temperature, especially during the summer, when the temperature approaches the softness point of the asphalt binder, and therefore, it is subject to multiple types of failure, especially rutting. The properties of asphalt binder and asphalt mixtures can be improved by using various additives. Coconut shell powder, made from the dried husk of coconut fruit, is a popular addition in many industries. As a result of its high strength and stability, this waste material can be recycled into functional structural components such as composite material reinforcement. This study was conducted to evaluate the performance of coconut husk as very fine particles passing through sieve number 200 (0.075 mm) to modify the asphalt binder. The modifier was added at rates of (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10) by the weight of asphalt binder. Two asphalt binder types, 80/100 and 40/50 penetration grade, were used in this study. All asphalt samples were tested for penetration, softening point, rotational viscosity, and dynamic shear rheology. The results showed that the modified samples had better physical and rheological properties compared to the base asphalt binders. However, (7-8%) replacement of coconut husk powder, regardless of the base asphalt binder, yielded the best performance among the modified binders. In conclusion, coconut powder has significant potential as a road-building material due to its impact on the viability of the road construction sector
Downloads
References
Safiuddin, M., Jumaat, M. Z., Salam, M. A., Islam, M. S., & Hashim, R. (2010). Utilization of solid wastes in construction materials. International journal of physical sciences, 5(13), 1952-1963.
Herrz, T. R., Herrz, J. I. R., Domingo, L. M., & Domingo, F. C. (2016). Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Construction and Building Materials, 102, 601-612. https://doi.org/10.1016/j.conbuildmat.2015.10.193
Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete?a review. Construction and Building Materials, 24(6), 871?877. https://doi.org/10.1016/j.conbuildmat.2009.11.009
Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58?73. https://doi.org/10.1016/j.resconrec.2007.02.002
Abdullah, M. E., Zamhari, K. A., Shamshudin, M. K., Hainin, M. R., & Satar, M. K. I. M. (2013). Rheological properties of asphalt binder modified with chemical warm asphalt additive. In Advanced Materials Research (Vol. 671, pp. 1692-1699). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amr.671-674.1692
Colorado, H. A., Nino, J. C., & Restrepo, O. (2018). Applications and Opportunities of Nanomaterials in Construction and Infrastructure. Characterization of Minerals, Metals, and Materials, 2018, 437?452. https://doi.org/10.1007/978-3-319-72484-3_46
Karaka?, A. (2019). M. R. Smith and L. Collis (eds): Aggregates: sand, gravel, and crushed rock aggregates for construction purposes (3rd edition). Arabian Journal of Geosciences, 13(11), 1-2. https://doi.org/10.1007/s12517-019-4975-y
Vale, A. C. do, Casagrande, M. D. T., & Soares, J. B. (2014). Behavior of Natural Fiber in Stone Matrix Asphalt Mixtures Using Two Design Methods. Journal of Materials in Civil Engineering, 26(3), 457?465. https://doi.org/10.1061/(asce)mt.1943-5533.0000815
Putman, B. J., & Amirkhanian, S. N. (2004). Utilization of waste fibers in stone matrix asphalt mixtures. Resources, Conservation and Recycling, 42(3), 265?274. https://doi.org/10.1016/j.resconrec.2004.04.005
Marasteanu, M. O., Clyne, T., McGraw, J., Li, X., & Velasquez, R. (2005). High-Temperature Rheological Properties of Asphalt Binders. Transportation Research Record: Journal of the Transportation Research Board, 1901(1), 52?59. https://doi.org/10.1177/0361198105190100107
Limantara, A. D., Winarto, S., Gardjito, E., Subiyanto, B., Raharjo, D., Santoso, A., ... & Mudjanarko, S. W. (2018, October). Optimization of standard mix design of porous paving coconut fiber and shell for the parking area. In AIP Conference Proceedings (Vol. 2020, No. 1, p. 020029). AIP Publishing LLC. https://doi.org/10.1063/1.5062655
Reddy, B. D., Jyothy, S. A., & Shaik, F. (2014). Experimental analysis of the use of coconut shell as coarse aggregate. J. Mech. Civil Eng, 10(6), 6-13. https://doi.org/10.9790/1684-1060613
Sivaraja, M., & Kandasamy, S. (2009). Characterisation of natural fibres as concrete composites for structural applications. International Journal of Materials and Product Technology, 36(1-4), 385-395. https://doi.org/10.1504/ijmpt.2009.027844
Hadiwardoyo, S. P. (2013). Evaluation of the addition of short coconut fibers on the characteristics of asphalt mixtures. Civil and Environmental Research, 3(4), 63-73.
Ramadhansyah, P. J., Aqeela, M. N., Amiera, J. S. N., Norhafizah, M., Norhidayah, A. H., & Dewi, S. J. (2016). Use of coconut shell from agriculture waste as fine aggregate in asphaltic concrete. ARPN Journal of Engineering and Applied Sciences, 11(12), 7457-7462.
Amiera Jeffry, S. N., Jaya, R. P., Manap, N., Miron, N. A., & Hassan, N. A. (2016). The influence of coconut shell as coarse aggregates in asphalt mixture. In Key Engineering Materials (Vol. 700, pp. 227-237). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/kem.700.227
Subramani, T. (2012). Experimental Investigations on Coir fibre reinforced bituminous mixes. Strain, 2, 4-5.
Xiao, F., Amirkhanian, S. N., Shen, J., & Putman, B. (2009). Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Construction and Building Materials, 23(2), 1028-1034. https://doi.org/10.1016/j.conbuildmat.2008.05.002
Chiew, Y. L., Iwata, T., & Shimada, S. (2011). System analysis for effective use of palm oil waste as energy resources. Biomass and Bioenergy, 35(7), 2925?2935. https://doi.org/10.1016/j.biombioe.2011.03.027
Sahari, J., & Sapuan, S. M. (2011). Natural fibre reinforced biodegradable polymer composites. Rev. Adv. Mater. Sci, 30(2), 166-174.
Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814-825. https://doi.org/10.1016/j.conbuildmat.2011.12.068
Hainin, M. R., Matori, M. Y., & Akin, O. E. (2014). Evaluation of factors influencing strength of foamed bitumen stabilised mix. Jurnal Teknologi, 70(4). https://doi.org/10.11113/jt.v70.3499
Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and building materials, 28(1), 208-215. https://doi.org/10.1016/j.conbuildmat.2011.08.072
Nagarajan, V. K., Devi S. A., Manohari, S. P., Santha, M. M. (2014). Experimental Study on Partial Replacement of Cement with Coconut Shell Ash in Concrete. International Journal of Science and Research, 3(3), 651-661.
Shelke, A. S., Ninghot, K. R., Kunjekar, P. P., & Gaikwad, S. P. (2014). Coconut shell as partial replacement for coarse aggregate. International Journal of Civil Engineering Research, 5(3), 211-214.
Ting, T. L., Jaya, R. P., Hassan, N. A., Yaacob, H., & Jayanti, D. S. (2015). A review of utilization of coconut shell and coconut fiber in road construction. Jurnal Teknologi, 76(14). https://doi.org/10.11113/jt.v76.5851
Oda, S., Fernandes Jr, J. L., & Ildefonso, J. S. (2012). Analysis of use of natural fibers and asphalt rubber binder in discontinuous asphalt mixtures. Construction and Building Materials, 26(1), 13-20. https://doi.org/10.1016/j.conbuildmat.2011.06.030
Panda, N. (2010). Laboratory investigations on stone matrix asphalt using sisal fibre for Indian roads (Doctoral dissertation). Rourkela: National Institute of Technology, BTech.
Kara De Maeijer, P., Soenen, H., Van den bergh, W., Blom, J., Jacobs, G., & Stoop, J. (2019). Peat fibers and finely ground peat powder for application in asphalt. Infrastructures, 4(1), 3. https://doi.org/10.3390/infrastructures4010003
Thulsairajan, K., & Narasimha, V. L. (2011). Studies on coir fibre reinforced bituminous concrete. Int J Earth Sci Eng, 4(6), 835-838.
Maharaj, R., Ali, R., Ramlochan, D., & Mohamed, N. (2019). Utilization of coir fibre as an asphalt modifier. Progress in Rubber, Plastics and Recycling Technology, 35(2), 59-74. https://doi.org/10.1177/1477760618795996
Mongkol, K., Chaturabong, P., & Suwannaplai, A. (2020). Effect of bagasse and coconut peat fillers on asphalt mixture workability. Coatings, 10(12), 1262. https://doi.org/10.3390/coatings10121262
Soenen, H., Kara De Maeijer, P., Blom, J., & Van den Bergh, W. (2019). Peat as an example of a natural fiber in bitumen. In RILEM 252-CMB Symposium: Chemo-Mechanical Characterization of Bituminous Materials (pp. 300-305). Springer International Publishing. https://doi.org/10.1007/978-3-030-00476-7_47
Alsheyab, M. A. T., & Khedaywi, T. S. (2013). Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture. Resources, Conservation and Recycling, 70, 38?43. https://doi.org/10.1016/j.resconrec.2012.10.003
Loaiza, A., Cifuentes, S., & Colorado, H. A. (2017). Asphalt modified with superfine electric arc furnace steel dust (EAF dust) with high zinc oxide content. Construction and Building Materials, 145, 538?547. https://doi.org/10.1016/j.conbuildmat.2017.04.050
Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., & Kennedy, T. W. (1996). Hot mix asphalt materials, mixture design and construction. Lanham (MD): NAPA Education Foundation.
Rusbintardjo, G., Hainin, M. R., & Yusoff, N. I. M. (2013). Fundamental and rheological properties of oil palm fruit ash modified bitumen. Construction and Building Materials, 49, 702-711. https://doi.org/10.1016/j.conbuildmat.2013.08.056