New Stereo Vision Algorithm Composition Using Weighted Adaptive Histogram Equalization and Gamma Correction

Authors

  • Ahmad Fauzan Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Rostam Affendi Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nurulfajar Abd. Manap Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Saad Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nadzrie Nadzrie Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Tg. Mohd Faisal Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2021.15.3.3

Keywords:

adaptive gamma correction, adaptive histogram equalization, pre-processing, stereo matching algorithm, stereo vision

Abstract

This work presents the composition of a new algorithm for a stereo vision system to acquire accurate depth measurement from stereo correspondence. Stereo correspondence produced by matching is commonly affected by image noise such as illumination variation, blurry boundaries, and radiometric differences. The proposed algorithm introduces a pre-processing step based on the combination of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Adaptive Gamma Correction Weighted Distribution (AGCWD) with a guided filter (GF). The cost value of the pre-processing step is determined in the matching cost step using the census transform (CT), which is followed by aggregation using the fixed-window and GF technique. A winner-takes-all (WTA) approach is employed to select the minimum disparity map value and final refinement using left-right consistency checking (LR) along with a weighted median filter (WMF) to remove outliers. The algorithm improved the accuracy 31.65% for all pixel errors and 23.35% for pixel errors in nonoccluded regions compared to several established algorithms on a Middlebury dataset.

Downloads

Download data is not yet available.

References

Cao, Y.S., Liu, J.G., Wen, T.X. & Bi, X., Improvement of Stereo Matching Algorithm Based On Guided Filtering and Kernel Regression, J. Phys. Conf. Ser., 1213(3), pp. 1-6, 2019.

Bebeselea-Sterp, E., Brad, R.R. & Brad, R.R., A Comparative Study of Stereovision Algorithms, Int. J. Adv. Comput. Sci. Appl., 8(11), pp. 359-375, 2017.

Scharstein, D. & Szeliski, R., A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms, Int. J. Comput. Vis., 47(1-3), pp. 7-42, 2002.

Jo, H.W. & Moon, B., A Modified Census Transform Using the Representative Intensity Values, ISOCC 2015 ? Int. SoC Des. Conf. SoC Internet Everything, pp. 309-310, 2016.

Hamzah, R.A., Hamid, M.S., Kadmin, A.F. & Abd Gani, S.F., Improvement of Stereo Corresponding Algorithm Based on Sum of Absolute Differences and Edge Preserving Filter, IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 222-225, 2017.

Tang, J.R. & Mat Isa, N.A., Bi-Histogram Equalization Using Modified Histogram Bins, Applied Soft Computing, 55(June), pp. 31-43, 2017.

Veluchamy, M. & Subramani, B., Image Contrast and Color Enhancement Using Adaptive Gamma Correction and Histogram Equalization, Optik (Stuttg)., 183(February), pp. 329-337, 2019.

Chang, Y., Jung, C., Ke, P., Song, H. & Hwang, J., Automatic Contrast-limited Adaptive Histogram Equalization with Dual Gamma Correction, IEEE Access, 6, pp. 11782-11792, 2018.

Huang, S.C., Cheng, F.C. & Chiu, Y.S., Efficient Contrast Enhancement Using Adaptive Gamma Correction with Weighting Distribution, IEEE Trans. Image Process., 22(3), pp. 1032-1041, 2013.

Scharstein, D., Hirschmuller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X. & Westling, P., High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth, German Conference on Pattern Recognition, pp. 31-42, 2014.

Lim, J., Kim, Y. & Lee, S., A Census Transform-based Robust Stereo Matching Under Radiometric Changes, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1- 4, 2017.

Hamzah, R.A., Wei, M.G.Y. & Anwar, N.S.N. Stereo Matching Based on Absolute Differences for Multiple Objects Detection, Telkomnika (Telecommunication Comput. Electron. Control.), 17(1), pp. 261-267, 2019.

Cigla, C. & Alatan, A.A., Information Permeability for Stereo Matching, Signal Process. Image Commun., 28(9), pp. 1072-1088, 2013.

Zhange, J.Y. & Piao, Y., Research on Stereo Matching Algorithm Based on Improved Steady-State Matching Probability, J. Phys.: Conf. Ser., 1004, 012009, 2018.

Mattoccia, S., Tombari, F. & Di Stefano, L., Stereo Vision Enabling Precise Border Localization within a Scanline Optimization Framework, Asian Conference on Computer Vision, pp. 517-527, 2007.

Kordelas, G.A., Alexiadis, D.S., Daras, P. & Izquierdo, E., Enhanced Disparity Estimation in Stereo Images, Image Vis. Comput., 35, pp. 31-49, 2015.

Wu, W., Li, L. & Jin, W., Disparity Refinement Based on Segment-Tree and Fast Weighted Median Filter, IEEE International Conference on Image Processing (ICIP), pp. 3449-3453, 2016.

Kaur, R., Chawla, M., Khiva, N.K. & Ansari M.D., Comparative Analysis of Contrast Enhancement Techniques for Medical Images, Pertanika J. Sci. Technol., 26(3), pp. 965-978, 2018.

Downloads

Published

2021-12-28

How to Cite

Fauzan, A., Affendi, R., Abd. Manap, N., Saad, M., Nadzrie, N., & Faisal, T. M. (2021). New Stereo Vision Algorithm Composition Using Weighted Adaptive Histogram Equalization and Gamma Correction. Journal of ICT Research and Applications, 15(3), 239-250. https://doi.org/10.5614/itbj.ict.res.appl.2021.15.3.3

Issue

Section

Articles