The Utility of Decision Tree and Analytics Hierarchy Process in Prioritizing of Social Aid Distribution due to Covid-19 Pandemic in Indonesia

Authors

  • Saucha Diwandari Faculty of Science and Engineering, Universitas Teknologi Yogyakarta, Jalan Siliwangi, Ring Road Road, Jombor, Sleman, Daerah Istimewa, Yogyakarta, 55528, Indonesia
  • Enny Itje Sela Faculty of Science and Engineering, Universitas Teknologi Yogyakarta, Jalan Siliwangi, Ring Road Road, Jombor, Sleman, Daerah Istimewa, Yogyakarta, 55528, Indonesia
  • Briyan Efflin Syahputra Faculty of Science and Engineering, Universitas Teknologi Yogyakarta, Jalan Siliwangi, Ring Road Road, Jombor, Sleman, Daerah Istimewa, Yogyakarta, 55528, Indonesia
  • Nathaniela Aptanta Parama Faculty of Science and Engineering, Universitas Teknologi Yogyakarta, Jalan Siliwangi, Ring Road Road, Jombor, Sleman, Daerah Istimewa, Yogyakarta, 55528, Indonesia
  • Anindita Septiarini Department of Computer Science, Universitas Mulawarman, Jalan Kuaro, Gn. Kelua, Kec. Samarinda Ulu, Kota Samarinda, Kalimantan Timur, 75123, Indonesia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.6

Keywords:

analytical hierarchy process, classification, decision tree, ranking, social aid

Abstract

The Indonesian government provided various social assistance programs to local governments during Covid-19. One of the difficulties for the local governments in determining candidates for social aid is ensuring that the number of candidates is in balance with the available quota. Therefore, the local governments must select the most eligible candidates. This study proposes a priority model that can provide recommendations for candidates who meet the criteria for social assistance. The six parameters used in this study were: number of dependents, occupation, income, age, Covid status, and citizen status. The model operates in two stages, namely classification followed by ranking. The classification stage is conducted using a decision tree, while the ranking stage is performed conducted using the Analytical Hierarchy Process (AHP) algorithm. The decision tree separates two classes, namely, eligible and non-eligible. In addition, the classification process is also used to determine the dominant attributes and played a role in the modeling. The proposed model generates a list of the most eligible candidates based on our research. These are sorted by weight from greatest to most eligible using five dominant parameters: number of dependents, income, age, Covid status, and citizen status.

Downloads

Download data is not yet available.

References

Susilawati, S., Falefi, R. & Purwoko, A., Impact of COVID-19?s Pandemic on the Economy of Indonesia, Bp. Int. Res. Crit. Inst. BIRCI-J. Humanit. Soc. Sci., 3(2), pp. 1147-1156, 2020. DOI: 10.33258/birci. v3i2.954.

Firasari, E., Khasanah, N., Khultsum, U., Kholifah, D.N., Komarudin, R. & Widyastuty, W., Comparation of K-Nearest Neighbor (K-NN) and Naive Bayes Algorithm for the Classification of the Poor in Recipients of Social Assistance, J. Phys. Conf. Ser., 1641(1), 012077, 2020. DOI: 10.1088/1742-6596/1641/1/012077.

Mohd, S., Syazli Fathi, M. & Nahar Harun, A., Information Management for Humanitarian Aid Distribution System in Malaysia, IOP Conf. Ser. Mater. Sci. Eng., 513(1), 012012, 2019. DOI: 10.1088/1757-899X/513/1/012012.

Sela, E.I. & Pulungan, R., Osteoporosis Identification Based on the Validated Trabecular Area on Digital Dental Radiographic Images, Procedia Comput. Sci., 157, pp. 282-289, 2019. DOI: 10.1016/j.procs.2019.08.168.

Sela, E.I. & Sutarman, Extracting the Potential Features of Digital Panoramic Radiograph Images by Combining Radio Morphometry Index, Texture Analysis and Morphological Features, J. Comput. Sci., 14(2), pp. 144-152, 2017. DOI: 10.3844/jcssp.2018.144.152.

Sela, E.I., Determination of Indicators that Play a Role in Poverty Identification using Data Mining, J. Ris. Drh. Ed. Khusus, 2015, pp. 16-32, 2015. (Text in Indonesian)

Wang, X., Zhou, C. & Xu, X., Application of C4.5 Decision Tree for Scholarship Evaluations, Procedia Comput. Sci., 151(2018), pp. 179-184, 2019. DOI: 10.1016/j.procs.2019.04.027.

Majid, M.A. & Sela, E.I., Performance Evaluation of Combined Consistency-Based Subset Evaluation and Artificial Neural Network for Recognition of Dynamic Malaysian Sign Language, J. Theor. Appl. Inf. Technol., 95(11), pp. 248-2496, 2017.

Liu, J., Ning, B. & Shi, D., Application of Improved Decision Tree C4.5 Algorithms in the Judgment of Diabetes Diagnostic Effectiveness, J. Phys. Conf. Ser., 1237(2), 022116, 2019. DOI: 10.1088/1742-6596/1237/2/022116.

Diwandari, S. & Hidayat, A.T, Comparison of Classification Performance Based on Dynamic Mining of User Interest Navigation Pattern in e-Commerce Websites, J. Phys. Conf. Ser., 1844(1), 012025, Mar. 2021. DOI: 10.1088/1742-6596/1844/1/012025.

Fachrie, M. & Ardiani, F., Predictive Model for Regional Elections Results based on Candidate Profiles, in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 247-252, Oct. 2021. DOI: 10.23919/EECSI53397.2021.9624256.

?Uyun, S. & Riadi, I., A Fuzzy Topsis Multiple-Attribute Decision Making for Scholarship Selection, Telkomnika, 9(1), pp. 37-46, 2011. DOI: 10.12928/telkomnika. v9i1.643.

Latumakulita, L.A., Purnama, F., Usagawa, T., Paturusi, S. & Prima, D.A., Indonesia Scholarship Selection Framework Using Fuzzy Inferences System Approach: Case Study: ?Bidik Misi? Scholarship Selection, in 2016 International Conference on Information & Communication Technology and Systems (ICTS), pp. 107-113, 2016. DOI: 10.1109/ICTS.2016.7910282.

Baffoe, G., Exploring The Utility of Analytic Hierarchy Process (AHP) In Ranking Livelihood Activities for Effective and Sustainable Rural Development Interventions in Developing Countries, Eval. Program Plann., 72, pp. 197-204, 2019. DOI: 10.1016/j.evalprogplan.2018.10.017.

Putra, M.G.L., Ariyanti, W. & Cholissodin, I., Selection and Recommendation Scholarships Using AHP-SVM-TOPSIS, J. Inf. Technol. Comput. Sci., 1(1), pp. 1-13, 2016. DOI: 10.25126/jitecs.2016111.

Latumakulita, L.A. & Usagawa, T., Indonesia Scholarship Selection Model Using a Combination of Back-Propagation Neural Network and Fuzzy Inference System Approaches, Int. J. Intell. Eng. Syst., 11(3), pp. 79-90, 2018. DOI: 10.22266/IJIES2018.0630.09.

Latumakulita, L.A. & Usagawa, T., A Combination of Backpropagation Neural Network on Fuzzy Inference System Approach in Indonesia Scholarship Selection Process: Case Study: ?Bidik Misi? Scholarship Selection, in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1309-1314, 2017. DOI: 10.1109/FSKD.2017.8392955.

Shah, D., Wang, J. & He, Q.P., Feature Engineering in Big Data Analytics for Iot-Enabled Smart Manufacturing ? Comparison between Deep Learning and Statistical Learning, Comput. Chem. Eng., 141, 106970, 2020. DOI: 10 1016/j.compchemeng.2020.106970.

Song, Y.Q., Yao, X., Liu, Z., Shen, X. & Mao, J., An Improved C4.5 Algorithm in Bagging Integration Model, IEEE Access, 8, pp. 206866-206875, 2020. DOI: 10.1109/ACCESS.2020.3032291.

Liu, W., Fan, H. & Xia, M., Step-Wise Multi-Grained Augmented Gradient Boosting Decision Trees for Credit Scoring, Eng. Appl. Artif. Intell., 97, 104036, 2021, DOI: 10.1016/j.engappai.2020.104036.

Muslim, M.A., Nurzahputra, A. & Prasetiyo, B., Improving Accuracy of C4.5 Algorithm Using Split Feature Reduction Model and Bagging Ensemble for Credit Card Risk Prediction, in 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 141-145, 2018. DOI: 10.1109/ICOIACT.2018.8350753.

Sela, E.I., Hartati, S., Harjoko, A., Wardoyo, R. & Mudjosemedi, M., Segmentation on the Dental Periapical X-Ray Images for Osteoporosis Screening, Int. J. Adv. Comput. Sci. Appl., 4(7), pp. 147-151, 2013. DOI: 10.14569/ijacsa.2013.040720.

Fitri, V.A., Andreswari, R. & Hasibuan, M.A., Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia Using Nae Bayes, Decision Tree, and Random Forest Algorithm, Procedia Comput. Sci., 161, pp. 765-772, 2019. DOI: 10.1016/j.procs.2019.11.181.

Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H. & Hong, H., Application of Alternating Decision Tree with Adaboost and Bagging Ensembles for Landslide Susceptibility Mapping, Catena, 187, 104396, 2020. DOI: 10.1016/j.catena.2019.104396.

Mienye, I.D., Sun, Y. & Wang, Z., Prediction Performance of Improved Decision Tree-Based Algorithms: A Review, Procedia Manuf., 35, pp. 698-703, 2019. DOI: 10.1016/j.promfg.2019.06.011.

Lee, J.S., AUC4.5: AUC-Based C4.5 Decision Tree Algorithm for Imbalanced Data Classification, IEEE Access, 7, pp. 106034-106042, 2019. DOI: 10.1109/ACCESS.2019.2931865.

Trabelsi, A., Elouedi, Z. & Lefevre, E., Decision Tree Classifiers for Evidential Attribute Values and Class Labels, Fuzzy Sets Syst., 366, pp. 46-62, 2019. DOI: 10.1016/j.fss.2018.11.006.

Wang, H.B. & Gao, Y.J., Research on C4.5 Algorithm Improvement Strategy based on MapReduce, Procedia Comput. Sci., 183, pp. 160-165, 2021. DOI: 10.1016/j.procs.2021.02.045.

Maceika, A., Bugajev, A., ?ostak, O.R. & Vilutien?, T., Decision Tree and Ahp Methods Application for Projects Assessment: A Case Study, Sustain. Switz., 13(10), pp. 1-33, 2021. DOI: 10.3390/su13105502.

Maceika, A., Bugajev, A. & ?ostak, O.R., The Modelling of Roof Installation Projects Using Decision Trees and the AHP Method, Sustain. Switz., 12(1), pp. 1-21, 2020. DOI: 10.3390/SU12010059.

Polo-Castada, M., Gez-Rojas, J. & Linero-Cueto, J., Application of AHP and GIS for Determination of Suitable Wireless Sensor Network Zones for Oceanographic Monitoring in the South Caribbean Sea Upwelling Zone, Int. J. Adv. Sci. Eng. Inf. Technol., 11(5), pp. 1696-1703, 2021. DOI: 10.18517/ijaseit.11.5.14293.

Fertier, A., Barthe-Delano A. M., Montarnal, A., Truptil, S. & Baben, F., A New Emergency Decision Support System: The Automatic Interpretation and Contextualisation of Events to Model a Crisis Situation in Real-Time, Decis. Support Syst., 133, no. December 2020, 2020, doi: 10.1016/j.dss.2020.113260.

Allaoui, H., Guo, Y. & Sarkis, J., Decision Support for Collaboration Planning in Sustainable Supply Chains, J. Clean. Prod., 229, pp. 761-774, 2019. DOI: 10.1016/j.jclepro.2019.04.367.

Butdee, S. & Phuangsalee, P., Uncertain Risk Assessment Modelling for Bus Body Manufacturing Supply Chain Using AHP and Fuzzy AHP, Procedia Manuf., 30, pp. 663-670, 2019. DOI: 10.1016/j.promfg.2019.02.094.

Kandakoglu, A., Saur A., Michalowski, W., Aquino, M., Graham, J. & McCormick, B., A Decision Support System for Home Dialysis Visit Scheduling and Nurse Routing, Decis. Support Syst., 130, November 2019, 113224, 2020. DOI: 10.1016/j.dss.2019.113224.

Wolnowska, A.E. & Konicki, W., Multi-Criterial Analysis of Oversize Cargo Transport through the City, Using The AHP Method, Transp. Res. Procedia, 39, pp. 614-623, 2019, DOI: 10.1016/j.trpro.2019.06.063.

Petruni, A., Giagloglou, E., Douglas, E., Geng, J., Leva, M.C. & M. Demichela, Applying Analytic Hierarchy Process (AHP) to Choose a Human Factors Technique: Choosing the Suitable Human Reliability Analysis Technique for the Automotive Industry, Saf. Sci., 119, pp. 229-239, 2019. DOI: 10.1016/j.ssci.2017.05.007.

Amir-Heidari, P. & Raie, M., Response Planning for Accidental Oil Spills in Persian Gulf: A Decision Support System (DSS) based on Consequence Modeling, Mar. Pollut. Bull., 140, pp. 116-128, 2019, DOI: 10.1016/j.marpolbul.2018.12.053.

Xu, H., Windsor, M., Muste, M. & Demir, I., A Web-Based Decision Support System for Collaborative Mitigation of Multiple Water-Related Hazards Using Serious Gaming, J. Environ. Manage., 255(1), 109887, 2020. DOI: 10.1016/j.jenvman.2019.109887.

Shah, S.A.A., Solangi, Y.A. & Ikram, M., Analysis of Barriers to the Adoption of Cleaner Energy Technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process, J. Clean. Prod., 235, pp. 1037-1050, 2019. DOI: 10.1016/j.jclepro.2019.07.020.

Hammami, S., Application of the GIS based Multi-criteria Decision Analysis and Analytical Hierarchy Process (AHP) in the Flood Susceptibility Mapping (Tunisia), Arab. J. Geosci., 12(21), 653, 2019, DOI: 10.1007/s12517-019-4754-9.

Li, X. & Mo, X., Application of AHP Based on Mathematical Operational Research in Teaching Evaluation System, J. Phys. Conf. Ser., 1650(3), 032015, 2020. DOI: 10.1088/1742-6596/1650/3/032015.

Syahputra, F., Muslim, A.M., Talaat, W.I.A.W. & Irsalinda, N., Analytical Hierarchy Process (AHP) in Selecting Suitable Marine Protected Area (MPA) site in Pulo Breuh (Breuh Island), Indonesia, J. Phys. Conf. Ser., 1373 (1), 012005, 2019. DOI: 10.1088/1742-6596/1373/1/012005.

?Uyun, S. & Riadi, I., A Fuzzy Topsis Multiple-Attribute Decision Making for Scholarship Selection, Telkomnika, 9(1), pp. 37-46, 2011, DOI: 10.12928/telkomnika. v9i1.643.

Putra, M.G.L., Ariyanti, W. & Cholissodin, I., Selection and Recommendation Scholarships Using AHP-SVM-TOPSIS, J. Inf. Technol. Comput. Sci., 1(1), pp. 1-13, 2016. DOI: 10.25126/jitecs.2016111.

Latumakulita, L.A. & Usagawa, T., Indonesia Scholarship Selection Model Using a Combination of Back- Propagation Neural Network and Fuzzy Inference System Approaches, Int. J. Intell. Eng. Syst., 11(3), pp. 79-90, 2018. DOI: 10.22266/IJIES2018.0630.09.

Downloads

Published

2023-04-30

How to Cite

Diwandari, S., Sela, E. I., Syahputra, B. E., Parama, N. A., & Septiarini, A. (2023). The Utility of Decision Tree and Analytics Hierarchy Process in Prioritizing of Social Aid Distribution due to Covid-19 Pandemic in Indonesia. Journal of ICT Research and Applications, 17(1), 82-98. https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.6

Issue

Section

Articles