The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs

Authors

  • Nasy`an Taufiq Al Ghifari School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Gusti Ayu Putri Saptawati School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Masayu Leylia Khodra School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Benhard Sitohang School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2023.17.2.7

Keywords:

dynamic, graph mining, heterogeneous, link prediction, performance evaluation

Abstract

Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved.

Downloads

Download data is not yet available.

References

Yang, K. & Toni, L., Graph-Based Recommendation System, 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings, pp. 798-802, Feb. 2019. DOI: 10.1109/GLOBALSIP.2018.8646359.

Salamat, A., Luo, X. & Jafari, A., HeteroGraphRec: A Heterogeneous Graph-Based Neural Networks for Social Recommendations, Knowl Based Syst, 217, 106817, Apr. 2021. DOI: 10.1016/j.knosys.2021.106817.

Sun, Y., Barber, R., Gupta, M., Aggarwal, C. C. & Han, J., Co-Author Relationship Prediction in Heterogeneous Bibliographic Networks, in Proceedings ? 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, pp. 12-128, 2011. DOI: 10.1109/ASONAM.2011.112.

Amin, M.I. & Murase, K., Link Prediction in Scientists Collaboration with Author Name and Affiliation, in Proceedings - 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems and 2016 17th International Symposium on Advanced Intelligent Systems, SCIS-ISIS 2016, Institute of Electrical and Electronics Engineers Inc., pp. 233-238, Dec. 2016. DOI: 10.1109/SCIS-ISIS.2016.0058.

Ketkar, N.S., Holder, L.B. & Cook, D.J., Mining in the Proximity of Subgraphs, 2006.

Feng, Y., Homogeneous and Heterogeneous Relational Graph for Visible-infrared Person Re-identification, ArXiv, Sep. 2021. DOI: 10.48550/arxiv.2109.08811.

Shahreza, M.L., Ghadiri, N., Mousavi, S.R., Varshosaz, J. & Green, J.R., Heter-LP: A Heterogeneous Label Propagation Algorithm and Its Application in Drug Repositioning, J Biomed Inform, 68, pp. 167-183, Apr. 2017. DOI: 10.1016/j.jbi.2017.03.006.

Xiong, F., Wang, X., Pan, S., Yang, H., Wang, H. & Zhang, C., Social Recommendation with Evolutionary Opinion Dynamics, IEEE Trans Syst Man Cybern Syst, 50(10), pp. 3804?3816, Oct. 2020. DOI: 10.1109/TSMC.2018.2854000.

Rafailidis, D. & Nanopoulos, A., Modeling the Dynamics of User Preferences in Coupled Tensor Factorization, in RecSys 2014-Proceedings of the 8th ACM Conference on Recommender Systems, Association for Computing Machinery, Inc, pp. 321-324, Oct. 2014. DOI: 10.1145/2645710.2645758.

Yang, J., Mcauley, J. & Leskovec, J., Community Detection in Networks with Node Attributes, in IEEE 13th International Conference on Data Mining, IEEE, pp. 1151-1156, 2013.

Bilgic, M., Namata, G.M. & Getoor, L., Combining Collective Classification and Link Prediction, in in Workshop on Mining Graphs and Complex Structures at the IEEE International Conference on Data Mining, 2007.

Rossi, R.G., Lopes, A.D.A. & Rezende, S.O., Optimization and Label Propagation in Bipartite Heterogeneous Networks to Improve Transductive Classification of Texts, Inf Process Manag, 52(2), pp. 217-257, Mar. 2016. DOI: 10.1016/j.ipm.2015.07.004.

Himmelstein, D.S. & Baranzini, S.E., Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes, PLoS Comput Biol, 11(7), e1004259, Jul. 2015. DOI: 10.1371/journal.pcbi.1004259.

Wang, Z., Liang, J., Li, R. & Qian, Y., An Approach to Cold-Start Link Prediction: Establishing Connections between Non-Topological and Topological Information, IEEE Trans Knowl Data Eng., 28(11), pp. 2857-2870, 2016. DOI: 10.1109/TKDE.2016.2597823.

Sawhney, K., Prasetio, M.C. & Paul, S., Community Detection Using Graph Structure and Semantic Understanding of Text, 2017.

Ning, H., Dhelim, S. & Aung, N., PersoNet: Friend Recommendation System Based on Big-Five Personality Traits and Hybrid Filtering, IEEE Trans Comput Soc Syst, 6(3), pp. 394-402, Jun. 2019. DOI: 10.1109/TCSS.2019.2903857.

Berkani, L., A Semantic and Social-based Collaborative Recommendation of Friends in Social Networks, Softw Pract Exp, 50(8), pp. 1498-1519, Aug. 2020. DOI: 10.1002/spe.2828.

Sharma, P.K., Rathore, S. & Park, J.H., Multilevel Learning Based Modeling for Link Prediction and Users? Consumption Preference in Online Social Networks, Future Generation Computer Systems, 93, pp. 952?961, Apr. 2019. DOI: 10.1016/j.future.2017.08.031.

Natarajan, S., Vairavasundaram, S., Natarajan, S. & Gandomi, A.H., Resolving Data Sparsity and Cold Start Problem in Collaborative Filtering Recommender System Using Linked Open Data, Expert Syst Appl, 149, 113248, Jul. 2020. DOI: 10.1016/J.ESWA.2020.113248.

Liu, G., An Ecommerce Recommendation Algorithm Based on Link Prediction, Alexandria Engineering Journal, 61(1), pp. 905-910, Jan. 2022. DOI: 10.1016/J.AEJ.2021.04.081.

Hwang, T. & Kuang, R., A Heterogeneous Label Propagation Algorithm for Disease Gene Discovery, in 10th SIAM International Conference on Data Mining, SDM, pp. 583-594, 2010. DOI: 10.1137/1.9781611972801.51.

Chen, X., Liu, M.X. & Yan, G.Y., Drug-Target Interaction Prediction by Random Walk on the Heterogeneous Network, Mol Biosyst, 8(7), pp. 1970-1978, Jul. 2012. DOI: 10.1039/c2mb00002d.

Yan, X.Y., Zhang, S.W. & Zhang, S.Y., Prediction of Drug-Target Interaction by Label Propagation with Mutual Interaction Information Derived from Heterogeneous Network, Mol Biosyst, 12(2), pp. 520-531, Jan. 2016. DOI: 10.1039/c5mb00615e.

Xu, X., Distributed Temporal Link Prediction Algorithm Based on Label Propagation, Future Generation Computer Systems, 93, pp. 627-636, Apr. 2019. DOI: 10.1016/j.future.2018.10.056.

Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y. & Lin, Y., Modeling Dynamic Heterogeneous Network for Link Prediction Using Hierarchical Attention with Temporal RNN, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12457 LNAI, pp. 282-298, 2021. DOI: 10.1007/978-3-030-67658-2_17/COVER.

Martez, V., Berzal, F. & Cubero, J.C., A Survey of Link Prediction in Complex Networks, ACM Comput Surv, 49(4), pp. 1-33, Dec. 2016. DOI: 10.1145/3012704.

Harary, F. & Gupta, G., Dynamic Graph Models, Math Comput Model, 25(7), pp. 79-87, Apr. 1997. DOI: 10.1016/S0895-7177(97)00050-2.

Maleki, N., Padmanabhan, B. & Dutta, K., Representing Social Networks as Dynamic Heterogeneous Graphs, in IEEE International Conference on Data Mining Workshops, ICDMW, IEEE Computer Society, pp. 714-723, 2022. DOI: 10.1109/ICDMW58026.2022.00098.

Shi, C., Wang, X. & Yu, P.S., Dynamic Heterogeneous Graph Representation, In: Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms., pp. 107-143, 2022. DOI: 10.1007/978-981-16-6166-2_5.

Xing, Z., Song, R., Teng, Y. & Xu, H., Dynhen: A Heterogeneous Network Model for Dynamic Bipartite Graph Representation Learning, Neurocomputing, 508, pp. 47-57, Oct. 2022. DOI: 10.1016/J.NEUCOM.2022.08.050.

Daud, N.N., Ab Hamid, S.H., Saadoon, M., Sahran, F. & Anuar, N. B., Applications of Link Prediction in Social Networks: A Review, Journal of Network and Computer Applications, 166, Academic Press, 102716, Sep. 15, 2020. DOI: 10.1016/j.jnca.2020.102716.

Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E. & Kim, S., Continuous-Time Dynamic Network Embeddings, The Web Conference 2018 - Companion of the World Wide Web Conference, WWW 2018, pp. 969-976, Apr. 2018. DOI: 10.1145/3184558.3191526.

Shi, C., Hu, B., Zhao, W.X. & Yu, P.S., Heterogeneous Information Network Embedding for Recommendation, IEEE Trans Knowl Data Eng, 31(2), pp. 357-370, Feb. 2019. DOI: 10.1109/TKDE.2018.2833443.

Fard, A.M., Bagheri, E. & Wang, K., Relationship Prediction in Dynamic Heterogeneous Information Networks, in Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval, ECIR 2019, Lecture Notes in Computer Science, 11437, Springer, Cham., 2019. DOI: 10.1007/978-3-030-15712-8_2

Bian, R., Dobbie, G., Koh, Y.S. & Divoli, A., Network Embedding and Change Modeling in Dynamic Heterogeneous Networks, SIGIR 2019 -Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 861-864, Jul. 2019. DOI: 10.1145/3331184.3331273.

Sajadmanesh, S., Bazargani, S., Zhang, J. & Rabiee, H.R., Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks, ACM Trans Knowl Discov Data, 13(4), 44, 2019. DOI: 10.1145/3333028.

Yin, Y., Ji, L.X., Zhang, J.-P. & Pei, Y.-L., DHNE: Network Representation Learning Method for Dynamic Heterogeneous Networks, IEEE Access, 7, pp. 134782-134792, 2019. DOI: 10.1109/ACCESS.2019.2942221.

Kong, C., Li, H., Zhang, L., Zhu, H. & Liu, T., Link Prediction on Dynamic Heterogeneous Information Networks, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11917 LNCS, pp. 339-350, Nov. 2019. DOI: 10.1007/978-3-030-34980-6_36.

Sankar, A., Wu, Y., Gou, L., Zhang, W. & Yang, H., Dynamic Graph Representation Learning via Self-Attention Networks, in Workshop on Representation Learning on Graphs and Manifolds in ICLR, 2019.

Goyal, P., Chhetri, S. R. & Canedo, A., Dyngraph2vec: Capturing Network Dynamics Using Dynamic Graph Representation Learning, Knowl Based Syst, 187, 104816, Jan. 2020. DOI: 10.1016/J.KNOSYS.2019.06.024.

Downloads

Published

2023-09-13

How to Cite

Al Ghifari, N. T., Saptawati, G. A. P., Khodra, M. L., & Sitohang, B. (2023). The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs. Journal of ICT Research and Applications, 17(2), 231-248. https://doi.org/10.5614/itbj.ict.res.appl.2023.17.2.7

Issue

Section

Articles

Most read articles by the same author(s)