Utilizing Generative Adversarial Network for Synthetic Image Generation to Address Imbalance Challenges in Chest X-Ray Image Classification

Authors

  • Nugraha Priya Utama School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
  • Muhammad Faris Muzakki Center for Artificial Intelligence (U-COE AI-VLB), Institut Teknologi Bandung, Jalan Ganesha No. 10 Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2023.17.3.6

Keywords:

chest X-ray datasets, Covid-19, generative adversarial networks (GANs), data augmentation, imbalanced data, medical imaging, pneumonia classification, synthetic X-ray images

Abstract

Deep learning-based classifiers need lots of image data to train. Unfortunately, not all real-world cases are supported by a huge amount of image data. One of the cases are images for classification of pneumonia infections with chest X-rays images. This study proposes a way of synthesizing chest X-rays with abnormal conditions in order to use the synthesized images for classification purposes. A GAN-based technique can generate synthetic images with greater quality that resemble original images thus can provide a more balanced data distribution than other approaches. To indirectly evaluate the quality of our GAN-based synthetic images, we used CNN-based classification architectures on diverse datasets. Three scenarios examined the effects of synthetic picture categorization. Scenario-1: adding 90% of synthesized images to the original images into the training dataset. Scenario-2: adding 50% of synthesized images to the original images. Scenario-3: adding 10% of synthesized image to the original images. The classification test revealed significantly increased F1 scores in all scenarios. Our study also emphasizes the significance of addressing the problem of imbalanced collections of chest X-ray images and the capability of GANs to alleviate this issue.

Downloads

Download data is not yet available.

References

Goodfellow, I.J., Pouget-Abadie J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y., Generative Adversarial Networks, arXiv preprint arXiv:14062661, 2014.

Mahdizadehaghdam, S., Panahi, A. & Krim, H., Sparse Generative Adversarial Network, Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 3063-3071. DOI:10.1109/ICCVW.2019.00369, 2019.

Mirza, M. & Osindero, S., Conditional Generative Adversarial Net, 1-7. Available: http://arxiv.org/abs/1411.1784, 2014.

Arjovsky, M., Chintala, S. & Bottou L., Wasserstein Generative Adversarial Networks, in Precup, D. & The, Y.W. (Eds.) Proceedings of the 34th International Conference on Machine Learning, PMLR., pp. 214-223, 2017.

Santosh, K.C., AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data, J Med Syst., 44, 93, 2020. DOI:10.1007/s10916-020-01562-1.

Kermany, D.S., Goldbaum, M., Cai, W. & Lewis, M.A., Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning Resource Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning, Cell, 172, pp. 1122-1131.e9, 2018. DOI: 10.1016/j.cell.2018.02.010.

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Abul Kashem, S., Bin, et al. Exploring the Effect of Image Enhancement Techniques on COVID-19 Detection using Chest X-Ray Images, Comput Biol Med, 132, 104319, 2021. DOI: 10.1016/j.compbiomed.2021.104319,

Chowdhury, M.E.H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z. Bin, Islam, K.R., Khan, M.S., Iqbal, A., Al Emadi, N., Reaz, M.I. & Islam, M.T., Can AI Help in Screening Viral and COVID-19 Pneumonia?, IEEE Access, 8, pp.132665-132676, 2020. DOI:10.1109/ACCESS.2020.3010287.

Brock, A., Donahue, J. & Simonyan, K., Large Scale GAN Training for High Fidelity Natural Image Synthesis, 2018.

Perme, M.P. & Manevski, D., Confidence Intervals for the Mann-Whitney Test, Stat Methods Med Res, 28, pp. 3755-3768, 2019. DOI:10.1177/0962280218814556,

Cho, Y.K. & Kim, M.S., Dry Eye After Cataract Surgery and Associated Intraoperative Risk Factors, Korean Journal of Ophthalmology, 23, 65, 2009. DOI:10.3341/kjo.2009.23.2.65.

Downloads

Published

2023-12-31

How to Cite

Utama, N. P., & Muzakki, M. F. (2023). Utilizing Generative Adversarial Network for Synthetic Image Generation to Address Imbalance Challenges in Chest X-Ray Image Classification. Journal of ICT Research and Applications, 17(3), 373-384. https://doi.org/10.5614/itbj.ict.res.appl.2023.17.3.6

Issue

Section

Articles