Water Filtration Machine with Monitoring System for Aquades Production and Founding an Optimal Pre- treatment Filter Ratio Before Reverse Osmosis Membrane

Authors

  • Ahmad Fauzan Adziimaa Department of Instrumentation Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Surabaya 60117, East Java,
  • Muhamad Sultan Rasyiid Department of Instrumentation Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Surabaya 60117, East Java, Indonesia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2025.19.2.4

Keywords:

aquades production, pre-treatment filtration, real-time monitoring, reverse osmosis (RO), sensor validation, total dissolved solids , water purification system, water quality compliance

Abstract

The increasing demand for distilled water (Aquades) in pharmaceutical and medical applications contrasts sharply with the limited quality of municipal water supplies and the high operating costs of commercial Aquades procurement. At the same time, many small-scale facilities still lack integrated systems capable of meeting the Indonesian Ministry of Health standard (Permenkes RI No. 32/2017). Existing research on reverse osmosis (RO) systems largely focuses on membrane or filtration performance, with limited attention to real-time water-quality monitoring and systematic optimization of pre-treatment filters. This study develops an integrated filtration and monitoring system designed to ensure regulatory compliance while optimizing the composition of pre-treatment materials. The system combines silica sand, activated carbon, and zeolite pre-filters with RO, supported by six analog sensors that continuously monitor pH, turbidity, and Total Dissolved Solids before and after filtration. Validation results show high sensor accuracy, with 99.77% for TDS, 98.10% for pH, and 99.97% for turbidity. Among six tested filter compositions, the 25% silica sand-25% activated carbon-50% zeolite configuration achieves the highest average filtration efficiency of 88.96%. These findings demonstrate that optimized pre-treatment combined with real-time monitoring can significantly improve RO performance and support cost-effective Aquades production for medical use.

Downloads

Download data is not yet available.

References

Yang, Z., Zhou, Y., Feng, Z., Rui, X., Zhang, T. & Zhang, Z., A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification, Polymers, 11(8), 2019. DOI: 10.3390/polym11081254.

Pezeshki, H., Hashemi, M. & Rajabi, S., Removal of Arsenic from Drinking Water by Nanofiltration and Reverse Osmosis Techniques, Heliyon, 9(3), e14246, 2023. DOI: 10.1016/j.heliyon.2023.e14246.

Maselela, J.L., Mokgobu, M.I. & Mudau, L.S., A Regulatory Framework for Bottled Water Quality Monitoring, Heliyon, 10(10), e31543, 2024. DOI: 10.1016/j.heliyon.2024.e31543.

Gonzez, P.S., Stehr, A. & Barra, R.O., Assessment of Water Quality Trends Using Aggregated Indices, Ecological Indicators, 166, 112373, 2024. DOI: 10.1016/j.ecolind.2024.112373.

Cornelissen, E.R., Harmsen, D.J.H. & Blankert, B., Effect of Minimal Pretreatment on Reverse Osmosis Performance, Desalination, 509, 115056, 2021. DOI: 10.1016/j.desal.2021.115056.

Parsa, S.M., Mega Scale Desalination Efficacy during COVID-19, Journal of Hazardous Materials Advances, 9, 100217, 2023. DOI: 10.1016/j.hazadv.2023.100217.

Mohammed, H.A., Sachit, D.E. & Al Furaiji, M.H., Treatment of Power Plant Wastewater Using RO, Desalination and Water Treatment, 283, 29192, 2023. DOI: 10.5004/dwt.2023.29192.

Hermawan, S., Pranata, F.J. & Limantara, I.R., Brackish Water Treatment Using Local Materials, Civil Engineering Dimension, 25(1), pp. 53-75, 2023. DOI: 10.9744/ced.25.1.53-66.

Daulay, A.H. & Manalu, K., Activated Carbon and Zeolite Combination for Water Treatment, JISTech, 4(2), 2019. DOI: N/A.

Yu, L.J., Rengasamy, K. & Lim, K.Y., Comparison of Activated Carbon and Zeolite Efficiency, Journal of Environmental Chemical Engineering, 7(4), 103223, 2019. DOI: 10.1016/j.jece.2019.103223.

Cala, A., Maturana Cdoba, A. & Soto Verjel, J., Pretreatment Influence on Reverse Osmosis Performance, Renewable and Sustainable Energy Reviews, 188, pp.1-14, 2023. DOI: 10.1016/j.rser.2023.113874.

Almawgani, A.H.M., Smart Monitoring System of Najran Dam, International Journal of Electrical and Computer Engineering, 10(4), pp. 3999~4007, 2020. DOI: 10.11591/ijece.v10i4.pp4045-4054.

Mohd Jais, N.A. & Abdullah, A.F., Improved Accuracy in IoT-Based Water Quality Monitoring, Heliyon, 10(8), e29022, 2024. DOI: 10.1016/j.heliyon.2024.e29022.

Bidari, M., Putri, M.A. & Nasir, S., Effect of Activated Carbon on RO Membrane Fouling, Jurnal Teknik Kimia, 28(3), pp. 100-106, 2022. DOI: N/A.

Abushaban, A., Salinas Rodriguez, S.G. & Kennedy, M.D., Pretreatment and Seawater RO Performance Assessment, Desalination, 467, pp 210-218, 2019. DOI: 10.1016/j.desal.2019.06.006.

Altmann, T., Rousseva, A. & Vrouwenvelder, J., Effectiveness of Ceramic Ultrafiltration Pretreatment, Desalination, 564, pp 1-14, 2023. DOI: 10.1016/j.desal.2023.116703.

Minier-Matar, J. & AlShamari, E., Evaluation of RO Membrane Fouling in Industrial Wastewater, Desalination, 572, pp 1-15, 2024. DOI: 10.1016/j.desal.2024.116942.

Sand, S. & Miring, T., Design of Filtration Systems Using Silica Sand and Activated Carbon, Applied Environmental Engineering, 2023. DOI: N/A.

Jebur, M. & Chiao, Y.H., Electrocoagulation as RO Pretreatment, Water Resources and Industry, 31, 100243, 2024. DOI: 10.1016/j.wri.2024. 100243.

Indonesian Ministry of Health, Regulation No. 32 of 2017 on Water Quality Standards, 2017. DOI: N/A.

Yu, L.J., Rengasamy, K., Lim, K.Y., Tan, L.S., Tarawneh, M., Zulkoffli, Z.B. & Se Yong, E.N., Comparison of Activated Carbon and Zeolites Filtering Efficiency in Freshwater, Journal of Environmental Chemical Engineering, 7(4), 103223, 2019. DOI: 10.1016/j.jece.2019.103223.

Hermawan, S., Pranata, F.J., Limantara, I.R., Steven, D., Fernaldi, J. & Prajogo, J.E., A Practical Implementation of Brackish Water Treatment with Local Material Aided by IoT Technology, Civil Engineering Dimension, 25(1), pp. 53-66, 2023. DOI: 10.9744/ced.25.1.53-66.

Abushaban, A., Salinas Rodriguez, S.G., Dhakal, N., Schippers, J.C. & Kennedy, M.D., Assessing Pretreatment and Seawater Reverse Osmosis Performance Using Modified Fouling Index, Desalination, 467, pp. 210-218, 2019. DOI: 10.1016/j.desal.2019.06.006.

Cornelissen, E.R., Harmsen, D.J.H., Blankert, B., Wessels, L.P. & van der Meer, W.G.J., Effect of Minimal Pretreatment on Reverse Osmosis Using Surface Water as a Source, Desalination, 509, 115056, 2021. DOI: 10.1016/j.desal.2021.115056.

Mohd Jais, N.A., Abdullah, A.F., Mohd Kassim, M.S. & Abd Karim, M.M., Improved Accuracy in IoT-Based Water Quality Monitoring Using Low-Cost Sensors, Heliyon, 10(8), e29022, 2024. DOI: 10.1016/j.heliyon.2024.e29022.

Gokul, V., Sivaramakrishna, R.V., Vignesh, P., Ramesh, P., Bino, J. & Bhuvaneswari, P.T.V., ISIS: IoT Enabled Smart Irrigation System, Advances in Emerging Technologies and Computing Innovations, Springer, Cham, 2025. DOI: 10.1007/978-3-031-92854-3_2.

Shabana Parveen, M., Lakshana, S.I., Saranya, P., Avanthika, S., Ramesh, P. & Bino, J., SI-SWCS: IoT Enabled Smart Water Consumption System with Cloud Integration, Advances in Emerging Technologies and Computing Innovations, Springer, Cham, 2025. DOI: 10.1007/978-3-031-92854-3_6.

Alzahrani, B. & Mohammad, A.W., Challenges in Membrane-Based Water Treatment Systems for Healthcare Applications, Desalination, 351, pp. 6-17, 2014. DOI: 10.1016/j.desal.2014.07.012.

Gharaibeh, S., Al-Ruz, F., Al-Abazi, R., Al-Sultan, K., Optimization of Multi-Media Filter Composition for High-Turbidity Surface Water, Environmental Technology, 40(23), pp. 3067-3078, 2019. DOI: 10.1080/09593330.2018.1460932.

Downloads

Published

2025-12-31

How to Cite

Adziimaa, A. F., & Rasyiid, M. S. (2025). Water Filtration Machine with Monitoring System for Aquades Production and Founding an Optimal Pre- treatment Filter Ratio Before Reverse Osmosis Membrane. Journal of ICT Research and Applications, 19(2), 166-190. https://doi.org/10.5614/itbj.ict.res.appl.2025.19.2.4