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Abstract  

Due to its intermittent nature, significant adoption of solar PV into the grid can decrease grid reliability. One solution to 

increase it is to increase PV self-consumption with two methods: adding Energy Storage System (ESS) and conducting 

Demand Side Management (DSM). University building has a distinct characteristic in its complex dynamics. Therefore, 

there is a lack of research to control both methods of increasing self-consumption. This paper aimed to do an integrated 

literature review on increasing self-consumption and then propose a system architecture recommendation for university 

building management based on the review. The Smart Grid Architectural Model (SGAM) evaluated the case study object. 

The result showed that a data-driven controller has been chosen as the most suitable controller for the university building 

management system. The data needed to build a data-driven controller could be obtained through readily available sensors 

in the case study object, making it feasible for implementation. 

Keywords: self-consumption, photovoltaics, load shifting, battery energy storage system, thermal comfort, university 

building. 
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Introduction 

Indonesia aims to achieve a 23% mix of renewable energy (RE) in primary energy produced by 2025. 

Consequently, RE will be massively integrated into Indonesia's dominant fossil-fuel grid in the upcoming years, 

including photovoltaics (PV). However, due to the intermittent nature of PV energy generation, grid reliability will 

likely decrease owing to congestion and atypical power flows [1]. Abundant electricity generation from PV 

systems in the middle of the day and the subsiding generation at dusk urge conventional grids to ramp up their 

capacity to serve the total grid demand. 

One solution to increase grid reliability is to increase PV self-consumption (SC). SC is the percentage of PV 

power directly consumed compared to the total energy produced by PV. There are two ways to increase SC, 

which are Demand Side Management (DSM) in the form of load shifting and the addition of an Energy Storage 

System (ESS) [2]. 

A large percentage of a university building's total load can be attributed to its air conditioning system. 

Therefore, a substantial increase in energy savings can be achieved by applying load shifting to heating, 

ventilating, and air conditioning (HVAC) load [3], [4]. However, university buildings have distinct characteristics 

from other types due to their uncertain patterns and activities. The rooms have random daily occupancy [5], [6] 

or instance, classroom occupancy depends on the class schedule. This characteristic makes identifying the 

room's thermal model challenging. They also have diverse room functions and levels of activity, which will 

result in different HVAC load demands depending on the thermal comfort target for each room. All these 
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factors result in complex dynamics and uncertain building power consumption. Complex dynamics in a building 

increase the risk of inaccuracies during the modeling. The complexity poses a significant challenge in applying 

model-based control for conducting demand response, opening an even greater possibility of supply and 

demand mismatch. Therefore, a suitable building management system that can satisfy its distinct 

characteristics is required to tackle the challenges of maximizing SC. 

This paper presents an integrated review of efforts to increase SC in university buildings. Moreover, this paper 

proposes a system architecture recommendation based on the literature review. 

Methodology 

This research began by evaluating the case study object's existing condition. This evaluation provided an 

overview of the pre-installed building system, and the next step was to review studies about efforts to increase 

self-consumption in university buildings. From the literature review, information regarding strategies 

implemented would be collected, which would be used to propose an enhanced system architecture aiming to 

integrate the solutions discovered. This research also discussed how the proposed system operated and its 

feasibility to be implemented in the case study object. This feasibility analysis was presented using a Smart 

Grid Architecture Model (SGAM) diagram.  

1 System architecture proposal 

SGAM was developed to find existing technical standards applicable to smart grids and identify gaps in the 

state-of-the-art and standardization [7]. The SGAM comprised three axes: Domains, Zones, and Interoperability 

layers [8]. Figure 1 shows the visualized SGAM. 

 

Figure 1. Overview of the Smart Grid Architecture Model (SGAM) 

The system’s architecture, which covers components required to develop the controller, will be proposed in the 

Component aspect of Interoperability layers, which covers the smart grid plane. The intelligent grid plane 

separates the electrical process aspect, which breaks down into the physical domains of the electrical energy 

conversion chain, and the information management aspect, which breaks down into the hierarchical zones or 

levels for the management of the electrical process [8]. 

2 Case study object 

The object used in this study was the Labtek XIV Freeport Indonesia Business Research Centre (FIBRC) 

building at the School of Business and Management, Institut Teknologi Bandung, Ganesa Campus. It was 

located in Bandung, West Java, Indonesia, at an elevation of approximately 780 m. The building consisted of 6 

stories with a height of 28.3 m, containing 3880.45 m2 total floor space. The ground floor was primarily filled 

with office spaces. Floors 1–5 shared similar floor plans, which housed instructional, laboratory, meeting, 

administration, utility rooms, and library. 
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Figure 2. Component interoperability layer for FIBRC building 

The FIBRC Building operates as a microgrid. Figure 2 is made to visualize the component layer of this 

microgrid. Main power is provided by the State Electricity Company (PLN), supplemented by a rooftop 57.6 kWp 

solar PV system. The PV system is set up with four SMA Tripower grid-tied PV inverters. A battery energy storage 

system (BESS) is also installed alongside the PV system, which can store 192 kWh of electricity. Two clusters 

of SMA Sunny Island battery inverters maintain the BESS as grid followers. 

Air conditioning of the building is handled by 13 Variable Refrigerant Flow (VRF) outdoor units, which serve the 

individual indoor units in the air-conditioned spaces within the building. The whole system can be managed 

using Daikin's implementation of BACnet through the iTM DCM601A51 interface. DTA116A51 modules have 

been installed in the outdoor units to complement the vendor-specific system and enable control via Modbus 

protocol. 

An energy monitoring system has already been developed for the building, which includes a network of smart 

energy meters and sensors. Energy meters are installed in the building's main distribution panel (MDP), sub-

distribution panels (SDP) on each floor of the building, critical infrastructure elements (lift motors, water 

pumps, HVAC outdoor units), as well as main contact points for several rooms. Room occupancy sensors or 

motion detectors and temperature and relative humidity sensors are also installed in specific rooms on floors 1 

through 5. Although these sensors are initially installed to control the area's lighting, they may also be 

accessed for occupancy monitoring for HVAC control. 

3 Literature selection 

The literature research will be divided into two main aspects: energy storage system and HVAC demand 

response. The keyword "university buildings" would be used in both aspects to maintain consistency of the 

results. The next step was researching suitable control methods while considering university building 

characteristics. From the papers selected and reviewed, the methods used in the implementation will be 

investigated for further review. 

Literature research 

1 Building-Integrated Microgrid 

It was previously mentioned that using PV in buildings increases the risk of decreasing grid reliability due to the 

intermittent nature of its source. There is also the risk of wasted energy production, especially mid-afternoon. 

Building-integrated microgrid (BIM) provides more flexibility, allowing the PV production to match the demand. 

A general microgrid schematic is displayed in Figure 3, including the power flow among the grid, transformer 

(TRF), loads, and sources. Generally, BIMs are equipped with energy storage systems, demand response, and 

Vehicle-to-Building and Building-to-Vehicle (V2B/B2V) systems [9]. BIM is equipped with only BESS and 

demand response in our case study object. 
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Figure 3. General Building-Integrated Microgrid schematic 

The use of BESS has been proven to increase self-consumption in buildings. [9] calculated that BESS 

enhanced PV self-consumption in the University of Coimbra, Portugal, from 94.4% to 96.3%. The percentage 

increase was considered small because almost all PV generation was directly used in the building. However, 

another example [10] studied the implementation of BESS in educational buildings, assuming it had similar 

complexity to typical university buildings. The implementation of BESS resulted in an improvement in self-

consumption from 39.5% to 62.6%. This improvement shows that energy storage can be used to increase self-

consumption drastically. 

2 Load shifting: Air conditioning system 

Shifting flexible loads such as HVAC in occupied buildings is bound to constraints arising from technical 

aspects, such as the duration of the shift and occupants' thermal comfort [11]. In the context of maximizing 

self-consumption, the amount and duration of load shifting is highly dependent on PV production. Another 

hurdle is defining boundaries for the load shifting on thermal comfort. 

The definition of thermal comfort is not straightforward. Researchers have tried to quantify it using various 

models, such as Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfaction (PPD), which were 

developed by Fanger [12]. Fanger has prescribed several factors affecting human thermal comfort, such as air 

temperature, mean radiant temperature, air velocity, humidity, occupants' clothing insulation, and activity level.  

In practice, some aspects affecting thermal comfort are hard to measure. Despite these challenges, 

researchers have tried to predict and model the thermal sensation of building occupants and incorporate it 

into HVAC control systems using various methods. Some past studies included direct human participation in 

the control system. In this approach, thermal sensation scores could be solicited from the occupants through 

either direct voting using an auxiliary software [13] or sensing the thermoregulation state of occupants 

[14]–[17]. Although involving the occupants in the HVAC control system improved energy efficiency [18], such 

a system was thought to be hard to upscale [19]. Moreover, using physiological sensors to predict the 

occupants' thermoregulation state raised privacy concerns [20]. 

Another widely adopted approach was the use of environmental sensors. [17] argued that these sensors were 

more affordable and had fewer privacy concerns. The most used sensors to approximate occupants' thermal 

comfort were temperature sensors (indoor and outdoor) [21], [22], relative humidity sensors [23], occupancy 

sensors [21], [22], and, in some cases, CO2 sensors [24]. [25] used environmental sensors to approximate 

occupants' thermal comfort and fed the university HVAC control system score. The result demonstrated the 

system's capability to keep thermal sensation neutral during 92% of the evaluation period. 

3 Types of controllers 

Most building control systems in the current literature still adopt on/off or simple rule-based controllers to save 

energy [26], [27]. Although rule-based controllers are easy to implement, they cannot control buildings whose 

dynamics have a significant time delay or large thermal inertia [28]. Controlling buildings with high thermal 

inertia using on/off controllers often results in instability. To tackle these issues, PID controllers are commonly 

deployed in HVAC systems. However, parameter setup for the controllers could become difficult, and the 

controllers' performance might decline when the operating condition is different from the starting point or 

when high uncertainty disturbance is present. Different operating conditions are commonly caused by 

disturbances such as changes in outdoor temperature, incoming sunlight through windows, and increasing 
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occupant activity levels [29]. Therefore, designing a control system that can work under complex building 

dynamics and uncertainties is crucial. 

One of the controllers that works well under complex dynamics is model predictive control (MPC) [28]. In MPC, 

prediction and optimization features are embedded in its architecture. It has been widely used in the latest 

research on maximizing self-consumption [30], [31]. The advantage of using MPC lies in formulating the 

mathematical model of the building system, thus allowing users to predict its state in the future. Based on this 

prediction, MPC can produce control actions optimally in accordance with the objectives while also considering 

optimization constraints, such as comfort, efficiency, and weather forecast [32]. 

In developing an MPC-based controller, a physical approach is used to develop a building system model [30], 

[31]. The physically based model uses mathematical expressions that experts in practical applications widely 

understand, and the model is closer to human language [33]. The downside of the physical model is the 

requirement of complex mathematical formulation to model a complex system, especially to be implemented 

in real-time. 

Another method is to use a data-driven model. Data-driven modeling is built upon a group of historical records, 

from which a machine-learning method is implemented to produce a model. Specifically, all parameters in the 

data-driven model will be chosen and modified through systematic comparison between model outputs and 

historical data, namely the training process. The data-driven model satisfies the requirements for practical 

application with new input only when the produced output error is inside the required threshold [34].  

Upon using a data-driven controller, sensor readings are fed into the controller. The data is then used to train 

the neural network in the controller, providing control actions to the building system. The control actions can 

be in the form of charging and discharging schedules for the BESS or temperature setpoints for the HVAC 

system. The application of a data-driven controller for either BESS or HVAC control has been demonstrated in 

[35], [36]. Table 1 shows the data-driven control method used in the paper and the data required to build a 

controller. From the research done in the control method, it is also apparent that there has not been any 

research on how the data-driven controller could be implemented to manage both BESS and HVAC systems.  

Table 1. Data-driven control on DSM and BESS and the data required 

Work Control Method Used Control Target Data Required 

[35] Long-Short Term Memory 

(LSTM) 

DSM (HVAC) • Occupants 

• Weather data 

• Cooling power 

• Temperature 

[37] Reinforcement Learning DSM (HVAC) • Zone mean air temperature 

• Zone thermal comfort value 

• Demand response signal (DDR or UDR) 

• Solar radiation 

• Outdoor dry bulb temperature 

• HVAC demand power 

• Total building electric demand power 

[36] H∞ BESS • Frequency response 

• Voltage 

[38] Reinforcement Learning BESS (with additional 

turbine system) 
• Energy load profile 

• PV power 

• Power purchase price 

• Gas purchase price (for the additional 

turbine system) 
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Proposed System Architecture 

 

Figure 4. Proposed system architecture 

A system architecture is proposed from the literature review done in section 3. Using a data-driven controller in 

the system is suggested that it does not need an explicit definition of the building model, thus being able to 

work under complex dynamics [4]. The controller receives input from both the building system environment 

and disturbance from external factors. The microgrid system feeds the battery's state of charge (SoC) data and 

the PV production to the controller. In contrast, the HVAC system provides the environment state to predict the 

occupants' thermal sensation and the HVAC load. The proposed system architecture is shown in Figure 4. 

The Function Interoperability layer is then used to specify the functions of existing components to build the 

controller. From the layer proposed in Figure 5, it can be summarized that the sensors readily available are 

sufficient to feed data from both energy storage and demand side management to the controller, making it 

feasible to implement the controller. 

 

Figure 5. Proposed system architecture in the SGAM Function Interoperability layer 

Conclusion 

BESS and demand response are necessary to maximize university building self-consumption, and a controller 

will be added to act as a bridge and integrate information from microgrid and HVAC systems. In order to satisfy 

the building's complex dynamics, the suitable type of controller is the data-driven controller, which requires 

data readings from sensors. All required components are readily available in the case study object. Therefore, 
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the controller can be implemented. The proposed system shown in the functional interoperability layer of 

SGAM can be used as a baseline to develop the controller within the case study object on top of the existing 

components and how each component will communicate to provide data for the controller. The following 

research will implement the proposed configurations directly in the case study object. 
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