Sistem Arsitektur Manajemen Bangunan untuk Memaksimalkan Swakonsumsi pada Bangunan Universitas: Studi Kasus

https://doi.org/10.5614/joki.2023.15.2.5

Penulis

  • Yumna Puspita Institut Teknologi Bandung
  • Rezky Mahesa Nanda Institut Teknologi Bandung
  • Reyza Arif M. Natawidjaja Institut Teknologi Bandung
  • Koko Friansa Institut Teknologi Bandung ; Institut Teknologi Sumatera
  • Justin Pradipta Institut Teknologi Bandung
  • Rizki Armanto Mangkuto Institut Teknologi Bandung
  • Irsyad N. Haq Institut Teknologi Bandung
  • Edi Leksono Institut Teknologi Bandung
  • Meditya Wasesa Institut Teknologi Bandung

Kata Kunci:

swakonsumsi, fotovoltaik, penggeseran beban, sistem baterai penyimpan energi, kenyamanan termal, bangunan universitas

Abstrak

Dikarenakan sifatnya yang intermitten, adopsi energi dari PV surya ke dalam jaringan dapat mengurangi keandalan jaringan. Salah satu solusi untuk meningkatkannya adalah dengan meningkatkan swakonsumsi PV dengan dua metode: menambahkan Sistem Penyimpanan Energi (SPBE) dan melakukan manajemen sisi permintaan. Gedung universitas memiliki karakteristik yang berbeda dalam dinamika kompleksnya. Kurangnya penelitian untuk mengendalikan kedua metode ini di gedung-gedung universitas disebabkan oleh karakteristik ini. Makalah ini bertujuan untuk melakukan tinjauan literatur terintegrasi tentang upaya meningkatkan konsumsi sendiri kemudian mengusulkan rekomendasi arsitektur sistem untuk manajemen gedung universitas berdasarkan tinjauan tersebut. Kami kemudian mengevaluasi objek studi kasus menggunakan Smart Grid Architecture Model (SGAM). Hasilnya menunjukkan bahwa pengendali berbasis data telah dipilih sebagai pengendali yang paling cocok untuk sistem manajemen gedung universitas.

Referensi

F. Pallonetto, M. De Rosa, F. Milano, and D. P. Finn, “Demand response algorithms for smart-grid ready residential buildings using machine learning models,” Appl Energy, vol. 239, pp. 1265–1282, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.02.020.

R. Luthander, J. Widén, D. Nilsson, and J. Palm, “Photovoltaic self-consumption in buildings: A review,” Applied Energy, vol. 142. Elsevier Ltd, pp. 80–94, Mar. 05, 2015, doi: https://doi.org/10.1016/j.apenergy.2014.12.028.

Nasruddin, Sholahudin, P. Satrio, T. M. I. Mahlia, N. Giannetti, and K. Saito, “Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm,” Sustainable Energy Technologies and Assessments, vol. 35, pp. 48–57, 2019, doi: https://doi.org/10.1016/j.seta.2019.06.002.

R. Tang and S. Wang, “Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids,” Appl Energy, vol. 242, pp. 873–882, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.03.038.

M. Khoshbakht, Z. Gou, and K. Dupre, “Energy use characteristics and benchmarking for higher education buildings,” Energy Build, vol. 164, pp. 61–76, Apr. 2018, doi: https://doi.org/10.1016/j.enbuild.2018.01.001.

J. A. Davis and D. W. Nutter, “Occupancy diversity factors for common university building types,” Energy Build, vol. 42, no. 9, pp. 1543–1551, 2010, doi: https://doi.org/10.1016/j.enbuild.2010.03.025.

M. Uslar et al., “Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective,” Energies (Basel), vol. 12, no. 2, 2019, doi: https://doi.org/10.3390/en12020258.

T. SCE-Cisco-IBM SGRA, “Smart Grid Reference Architecture,” Using Information and Communication Services to Support a Smarter Grid, 2011. Available: https://docplayer.net/16352616-Smart-grid-reference-architecture.html.

P. Moura, J. Delgado, and P. Fonseca, “University Campus Microgrid for Supporting Sustainable Energy Systems Operation; University Campus Microgrid for Supporting Sustainable Energy Systems Operation,” Conference: 2020 IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference (I&CPS), 2020, https://doi.org/10.1109/ICPS48389.2020.9176755.

C. D. S. Castilho, J. P. N. Torres, C. A. F. Fernandes, and R. A. M. Lameirinhas, “Study on the implementation of a solar photovoltaic system with self-consumption in an educational building,” Energies (Basel), vol. 14, no. 8, Apr. 2021, doi: https://doi.org/10.3390/en14082214.

D. Schwabeneder, A. Fleischhacker, G. Lettner, and H. Auer, “Assessing the impact of load-shifting restrictions on profitability of load flexibilities,” Appl Energy, vol. 255, p. 113860, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.113860.

P. O. Fanger, Thermal comfort: Analysis and Applications in Environmental Engineering, Copenhagen: Danish Technical Press, 1970, doi: https://doi.org/10.1177/146642407209200337.

D. Sheikh Khan, J. Kolarik, and P. Weitzmann, “Application of an occupant voting system for continuous occupant feedback on thermal and indoor air quality – Case studies in office spaces,” Energy Build, vol. 251, p. 111363, 2021, doi: https://doi.org/10.1016/j.enbuild.2021.111363.

F. Jazizadeh and W. Jung, “Personalized thermal comfort inference using RGB video images for distributed HVAC control,” Appl Energy, vol. 220, pp. 829–841, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.02.049.

W. Jung and F. Jazizadeh, “Vision-based thermal comfort quantification for HVAC control,” Build Environ, vol. 142, pp. 513–523, 2018, doi: https://doi.org/10.1016/j.buildenv.2018.05.018.

Z. Wang, R. Matsuhashi, and H. Onodera, “Towards wearable thermal comfort assessment framework by analysis of heart rate variability,” Build Environ, vol. 223, p. 109504, 2022, doi: https://doi.org/10.1016/j.buildenv.2022.109504.

A. Aryal and B. Becerik-Gerber, “Thermal comfort modeling when personalized comfort systems are in use: Comparison of sensing and learning methods,” Build Environ, vol. 185, p. 107316, 2020, doi: https://doi.org/10.1016/j.buildenv.2020.107316.

T. Harputlugil and P. de Wilde, “The interaction between humans and buildings for energy efficiency: A critical review,” Energy Res Soc Sci, vol. 71, p. 101828, 2021, doi: https://doi.org/10.1016/j.erss.2020.101828.

L. Chen, A. Ermis, F. Meng, and Y. Zhang, “Meta-learning of personalized thermal comfort model and fast identification of the best personalized thermal environmental conditions,” Build Environ, vol. 235, p. 110201, 2023, doi: https://doi.org/10.1016/j.buildenv.2023.110201.

A. Aryal and B. Becerik-Gerber, “A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor,” Build Environ, vol. 160, p. 106223, 2019, doi: https://doi.org/10.1016/j.buildenv.2019.106223.

A. Jindal, N. Kumar, and J. J. P. C. Rodrigues, “A Heuristic-Based Smart HVAC Energy Management Scheme for University Buildings,” IEEE Trans Industr Inform, vol. 14, no. 11, pp. 5074–5086, 2018, doi: https://doi.org/10.1109/TII.2018.2802454.

I. T. Michailidis et al., “Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study,” Appl Energy, vol. 211, pp. 113–125, 2018, doi: https://doi.org/10.1016/j.apenergy.2017.11.046.

J. C. Solano, L. Olivieri, and E. Caamaño-Martín, “Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control,” Appl Energy, vol. 206, pp. 249–266, 2017, doi: https://doi.org/10.1016/j.apenergy.2017.08.188.

Y. Peng, Z. Nagy, and A. Schlüter, “Temperature-preference learning with neural networks for occupant-centric building indoor climate controls,” Build Environ, vol. 154, pp. 296–308, 2019, doi: https://doi.org/10.1016/j.buildenv.2019.01.036.

C. Turhan, S. Simani, and G. Gokcen Akkurt, “Development of a personalized thermal comfort driven controller for HVAC systems,” Energy, vol. 237, p. 121568, 2021, doi: https://doi.org/10.1016/j.energy.2021.121568.

J. Drgoňa, D. Picard, and L. Helsen, “Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration,” J Process Control, vol. 88, pp. 63–77, 2020, doi: https://doi.org/10.1016/j.jprocont.2020.02.007.

A. Esfandyari, B. Norton, M. Conlon, and S. J. McCormack, “Performance of a campus photovoltaic electric vehicle charging station in a temperate climate,” Solar Energy, vol. 177, pp. 762–771, 2019, doi: https://doi.org/10.1016/j.solener.2018.12.005.

A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC control systems – A review of model predictive control (MPC),” Build Environ, vol. 72, pp. 343–355, 2014, doi: https://doi.org/10.1016/j.buildenv.2013.11.016.

F. Oldewurtel et al., “Use of model predictive control and weather forecasts for energy efficient building climate control,” Energy Build, vol. 45, pp. 15–27, 2012, doi: https://doi.org/10.1016/j.enbuild.2011.09.022.

E. Biyik and A. Kahraman, “A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings,” Journal of Building Engineering, vol. 25, p. 100826, 2019, doi: https://doi.org/10.1016/j.jobe.2019.100826.

O. U. Rehman, S. A. Khan, and N. Javaid, “Impact of photovoltaic self-consumption curtailment on building-to-grid operations,” International Journal of Electrical Power & Energy Systems, vol. 124, p. 106374, 2021, doi: https://doi.org/10.1016/j.ijepes.2020.106374.

J. Cigler, D. Gyalistras, J. Široký, V.-N. Tiet, and L. Ferkl, “Beyond theory: the challenge of implementing Model Predictive Control in buildings”. Available: https://www.synergy.ch/OptiControl/Lit/Cigl_13_Proc-Clima2013.pdf.

O. Loyola-González, “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View,” IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2949286.

X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey of human-in-the-loop for machine learning,” Future Generation Computer Systems, vol. 135, pp. 364–381, 2022, doi: https://doi.org/10.1016/j.future.2022.05.014.

G. Pinto, D. Deltetto, and A. Capozzoli, “Data-driven district energy management with surrogate models and deep reinforcement learning,” Appl Energy, vol. 304, p. 117642, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117642.

D. J. Ryan, R. Razzaghi, H. D. Torresan, A. Karimi, and B. Bahrani, “Grid-Supporting Battery Energy Storage Systems in Islanded Microgrids: A Data-Driven Control Approach,” IEEE Trans Sustain Energy, vol. 12, no. 2, pp. 834–846, 2021, doi: https://doi.org/10.1109/TSTE.2020.3022362.

D. Azuatalam, W.-L. Lee, F. de Nijs, and A. Liebman, “Reinforcement learning for whole-building HVAC control and demand response,” Energy and AI, vol. 2, p. 100020, 2020, doi: https://doi.org/10.1016/j.egyai.2020.100020.

K. Zhou, K. Zhou, and S. Yang, “Reinforcement learning-based scheduling strategy for energy storage in microgrid,” J Energy Storage, vol. 51, Jul. 2022, doi: https://doi.org/10.1016/j.est.2022.104379.

Diterbitkan

2024-01-09

Cara Mengutip

[1]
Y. Puspita, “Sistem Arsitektur Manajemen Bangunan untuk Memaksimalkan Swakonsumsi pada Bangunan Universitas: Studi Kasus”, JOKI, vol. 15, no. 2, hlm. 113-121, Jan 2024.

Artikel paling banyak dibaca berdasarkan penulis yang sama