On Rural Typologies with Neural Network Method: Case Study on Xining Region

Authors

  • Zhang Weifeng Master student, Tongji University, Shanghai, China
  • Zhang Li Associate Professor, Tongji University, Shanghai, China

DOI:

https://doi.org/10.5614/jpwk.2020.31.1.2

Keywords:

rural areas, typology, neural network

Abstract

There are great differences between the rural areas of China, and rural areas themselves have complex development characteristics. With the implementation of the strategy of rural revitalization, 'one-fits-all' rural policy standards have had difficulty to meet the needs of different types of rural development. Rural policies adapted to local conditions cannot be separated from the identification of rural types. How to scientifically distinguish between rural areas and a widely ranged rural typology is of great significance. This paper attempts to introduce the artificial neural network method to identify rural types and to explore the impact of the neural network model trained with different sample data on the results of rural type recognition. Taking the Xining region as an example, rural types were identified and the applicability of the model was tested. Finally, the recognition results of the neural network model were examined and further improvement of the proposed method is discussed.

Abstrak. Ada perbedaan besar di daerah perdesaan di negara China, dan daerah pedesaan itu sendiri memiliki karakteristik pembangunan yang kompleks. Dengan penerapan strategi revitalisasi pedesaan, standar kebijakan pedesaan "satu-untuk-semua" sulit memenuhi kebutuhan berbagai jenis pembangunan pedesaan. Kebijakan-kebijakan perdesaan yang disesuaikan dengan kondisi lokal tidak dapat dipisahkan dari identifikasi tipe perdesaan. Cara membedakan secara ilmiah daerah perdesaan dan berbagai tipologi perdesaan menjadi sangat penting. Makalah ini memperkenalkan metode jaringan saraf tiruan untuk mengidentifikasi tipe perdesaan, dan mengeksplorasi dampak model jaringan saraf yang telah dilatih untuk mengenaili tipe perdesaan dengan data sampel yang berbeda. Dengan mengambil wilayah Xining sebagai contoh, tipe perdesaan diidentifikasi, dan penerapan model diuji. Akhirnya, hasil pengenalan oleh model jaringan saraf dievaluasi , dan peningkatan lebih lanjut dari metode ini dibahas.

Kata kunci. Daerah Pedesaan, tipologi, jaringan saraf.

References

Cloke, P. (1977) An index of rurality for England and Wales. Regional Studies 11(1), 31-46.

Cloke, P. (1987) Rurality and change: Some cautionary notes. Journal of Rural Studies 3(1), 71-76.

Copus, A K. (1996) A Rural Development Typology of European NUTS III Regions. The Impact of Public Institutions on Lagging Rural and Coastal Regions.

BaA,ski J., Stola W. (2002) Przemiany struktury przestrzennej i funkcjonalnej obszarow wiejskich w Polsce. Studia Obszarow Wiejskich.

Dimitris B., Thanasis K., Lois L. (2003) A comparative study of typologies for rural areas in Europe. European Congress of the Regional Science Association.

Ferro J., Lopes R. (2003) Zones rurales et capacite entrepreneuriale au Portugal : pratiques, representations, politiques. Geographie conomie Societe 5(2), 139-160.

Aubert F., Lepicier D., Schaeffer Y. (2017) Diagnostic des espaces ruraux franais : proposition de methode sur donnees communales et resultats l'echelle du territoire national. Cuadernos De Accion Social , 8-10.

Long Hualou., Liu Yansui., Zou Jian. (2009) Assessment of Rural Development Types and Their Rurality in Eastern Coastal China. Acta Geographica Sinica 64(04), 426-434.

Meng Huanhuan., Li Tongsheng., Yu zhengfei., Li Fei. (2013) Rurality and Acorrelation Analysis of the Cuunty Economy in Anhui Province. Economic Geography 33(04), 144-148+185.

Ma Xiaodong., Li Jinlin., Shen Yi. (2012) Morphological Difference and Regional Types of Rural Settlements in Jiangsu Province. Acta Geographica Sinica 67(04), 516-525.

He Xuefeng., Dong Leiming. (2005) Rural Governance in China: Structure and Typology. Comparative Economic & Social Systems 2005(03), 42-50+15.

Xin Gurui., Xu Yilun., Zheng Yin. (2007) Rural Settlement Spatial Evolution Types and Features in The Process of Urbanization. Economic Geography 2007(06), 932-935.

Dong Yue., Hua Chen. (2017) Types of Villages and Their Development Strategies Based on The Balance Of Economy, Construction and Ecology. Planners 33(01), 128-133.

Blunden J R., Pryce W T R., Dreyer P. (1998) The Classification of Rural Areas in the European Context: An Exploration of a Typology Using Neural Network Applications. Regional Studies 32(2), 149-160.

Mcclelland J., Rumelhart D. (1987) Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Psychological and Biological Models. MIT Press.

Lippmann R P. (1988) An introduction to computing with neural nets. IEEE Acoustics Speech & Signal Processing Magazine 16(1), 7-25.

Dreyer P. (1993) Classification of land cover using optimized neural nets on SPOT data. Photogrammetric Engineering & Remote Sensing 59(5), 617-621.

Gao Pengyi. (2012) Study on The Optimization of Backpropagation Neural Network Classifier. Huazhong University of Science and Technology, 19-33.

Tongji University, Anhui University of Architecture, Changan University, Chengdu University of Technology, Huazhong University of Science and Technology, Inner Mongolia University of Technology, Shandong University of Architecture, Shenzhen University, Shenyang University of Architecture, Suzhou University of Science and Technology, Xining Planning and Design Institute. (2016) Research Report of Rural Population Flow and Residential Environment. Ministry of Housing and Urban-Rural Development of People's Republic of China.

Downloads

Published

2020-04-23

Issue

Section

Research Articles