An Intelligent Method for Industrial Location Selection: Application to Markazi Province, Iran

Authors

  • Hadi Aliverdilou Department of Management and Accounting, Faculty of Humanities, University of Tehran, Tehran, Iran
  • Mehran Hajilou Ph.D. student in Geograph and Urban Planning, Department of Geography and Planning, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
  • Hasanali Faraji Sabokbar Department of Geography, Faculty of Humanities, University of Tehran, Tehran, Iran
  • Amin Faraji Department of Management and Accounting, Faculty of Humanities, University of Tehran, Tehran, Iran

DOI:

https://doi.org/10.5614/jpwk.2021.32.3.5

Keywords:

FUZZY Inference System (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial neural network (ANN), industrial location, Markazi Province

Abstract

Decision-making and selection are important and sensitive aspects of planning. An important part of land-use planning is the location of human activities. Locating activities in the right places determines the future space of a region. Selection and definition of natural and human indices and criteria for location always face uncertainty. Thus, this study aimed to develop an intelligent method for industrial location. In this study a developmental-applied approach was used along with a descriptive-analytical method for data analysis. Through the review of related literature and a Delphi survey, 18 criteria were extracted and 6 main components were categorized. The data were analyzed and modeled by GIS, MATLAB software, and the Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. For each modeling three industrial domains were extracted, i.e. weak, medium, and premium. A total of 42,968 hectares of premium industrial location with a score higher than 0.7 resulted from combining the produced maps. Other important findings were related to the architecture and methodology applied in the research based on computational intelligence and knowledge-based systems to analyze and understand the processes that influence the score of locations. The novelty of this method lies in the use of high computing power and information evaluation based on artificial intelligence (AI), making it possible to analyze and understand the processes influencing industrial location.

Abstrak. Pengambilan keputusan dan seleksi adalah aspek-aspek penting dan sensitive dalam perencanaan. Bagian yang penting dalam sebuah perencaan penggunaan lahan adalah terkait lokasi kegiatan manusia. Alokasi kegiatan manusia pada tempat yang benar adalah penentu ruang masa depan dari suatu wilayah. Dalam hal seleksi dan definisi index, juga kriteria lokasi selalu menghadapi ketidakpastian. Sehingga, studi ini dilakukan untuk mengembangkan metode yang berguna dalam alokasi industri. Pada artikel ini, digunakan pendekatan terapan-terkembangkan dengan metode analisis deskriptif dalam hal analisis data. Berdasarkan tinjauan pada literatur terkait dan survey Delphi, 18 kritersia diekstraksi yang dikategorikan pada 6 komponen utama. Data dianalisis dan dimodelkan menggunakan GIS, MATLAB, Fuzzy Inference System (FIS), dan metode Adaptive Neuro-Fuzzy Inference System (ANFIS). Untuk setiap model, tiga domain industry ditentukan, yakni: lemah, moderat, dan premium. Terdapat lokasi industry premium dengan total 42,968 ha dengan nilai lebih dari 0.7. Hasil penting lainnya berkaitan dengan arsitektur dan metode terapan dalam penelitian yang berdasar kepada ilmu komputasi untuk memahami proses yang memengaruhi nilai untuk suatu lokasi. Kebaruan dari metode ini ada pada penggunaan model komputasi tinggi dan evaluasi informasi berdasarkan kecerdasan buatan (AI) yang memungkinkan untuk melakukan analisis dan memahami proses yang memengaruhi lokasi industri.

Kata kunci. Fuzzy Inference System (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), lokasi industri, Provinsi Markazi.

References

Aengchuan, P., & Phruksaphanrat, B. (2018). Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN), and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Journal of Intelligent Manufacturing, 29(4), 905-923.

?

Ahmadizadeh, S. S. R., Hajizadeh, F., & Ziaie, M. (2012). Application and Comparative Study of Hierarchical and Fuzzy Analysis Patterns in Land Suitability (Case Study: Birjand Industrial Estate). Geography and Regional Development, 10 (18), 202-216. https://doi.org/10.22067/geography.v10i18.17383.

AlamSabater, L., Artal-Tur, A., & Navarro-Azor, J. M. (2011). Industrial location, spatial discrete choice models, and the need to account for neighborhood effects. The Annals of Regional Science, 47(2), 393-418.

?

Alp, O., Erkut, E., & Drezner, Z. (2003). An efficient genetic algorithm for the p-median problem. Annals of Operations research, 122(1-4), 21-42.

?

Ameri, M., Barg Gol, I. (2007). Land Allocation Modelling in Regional Level Based on Accessibility and Land value. Journal of Transportation Research, 4, 131-144.

Amini, A. (2015). A multi-criteria group decision-making approach for rural industrial site selection using fuzzy TOPSIS in central Iran. Social and Economic Geography, 1(1), 44-54.

?

Arauzo-Carod, J. M. (2005). Determinants of industrial location: An application for Catalan municipalities. Papers in Regional Science, 84(1), 105-120.

?

Arauzo-Carod, J. M., & Manj-Antol, M. (2012). (Optimal) spatial aggregation in the determinants of industrial location. Small Business Economics, 39(3), 645-658.

?

Arauzo-Carod, J. M., Liviano-Sol? s, D., & Manjon-Antol? n, M. (2010). Empirical studies in industrial location: An assessment of their methods and results. Journal of Regional Science, 50(3), 685?711.

Ashornezhad, Gh., Darwishi-Blourani, A., Neisani-Samani, N., Jafari, M., Agha-Taher, R., Falah-Zazoili, M., (2016). Identifying and designing an optimal location model with an emphasis on integrating data-based and knowledge-based approaches in decision-making level with GIS with emphasis on Tehran's economic zoning, Geography and Territorial Spatial Arrangement, 6(18), 97-118. DOI: 10.22111/gaij.2016.2371.

Autant-Bernard, C. (2006). Where do firms choose to locate their R&D? A spatial conditional logit analysis on French data. European planning studies, 14(9), 1187-1208.

?

Azimi Hoseini, M., Nazarifar, M.H. & Momeni R. (2012). The use of GIS in siting. (1st, Ed.) Mehrjerd Publishers.

Briassoulis, H. (1995). Environmental Criteria in Industrial Facility Siting Decisions: An Analysis. Environmental Management, 9(2), 297-311.

Camastra, F., Ciaramella, A., Giovannelli, V., Lener, M., Rastelli, V., Staiano, A., et al. (2015). A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Systems with Applications, 42, 1710?1716.

Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic theory and applications. Berlin: Springer.

Chang, P. Y., & Lin, H. Y. (2015). Manufacturing plant location selection in logistics network using Analytic Hierarchy Process. Journal of Industrial Engineering and Management (JIEM), 8(5), 1547-1575.

?

Church, R. L. (2002). Geographical information systems and location science. Computers & Operations Research, 29(6), 541-562.

?

Davis, K. (1965). The urbanization of the human population. Scientific American, 213(3), 40?53.

De Kok, J. L., Engelen, G., White, R., Wind, H. G. (2004). Modeling Land-use Change in a Decision-support System for Coastal- Zone Management. Environ. Model. Assess, 6, 123-132.

De Montis, A. (2013). Implementing strategic environmental assessment of spatial planning tools: A study on the Italian provinces. Environmental Impact Assessment Review, 41, 53-63. doi:http://dx.doi.org/10.1016/j.eiar.2013.02.004

Deichmann, C., Lall, S. V., Redding, S. J., Venables, A. J. (2008, September). Industrial location in developing countries. World Bank Research Observer, 23(2), 219-246.

Delavari, E., Mostafa Gharabaghi, A. R., & Chenaghlou, M. R. (2013). Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics. Journal of the Persian Gulf, 4(14), 47-60.

?

Faraji Molaie, A. Aliverdiloo, H. Hossieni Amini, H. (2015). Territorial Defense planning in perspective of passive defense, Geography, 13(45), 247-274.

Faraji Sabokbar, H. A. (2016). Providing a Model for Assessing the Quality of the Natural Environment in Rural Areas Using Knowledge-Based Systems. Journal of Research and Rural Planning, 5(1), 1-18. https://doi.org/10.22067/jrrp.v5i1.37406.

Fataei, E., & Mohammadian, A. (2015). Industrial state site selection using MCDM method and GIS in Germi, Ardabil, Iran. Journal of Industrial and Intelligent Information, 3(4), 324-329.

?

Fernando, G.M.T.S., Sangasumana, V.P., Edussuriya, C.H., (2015). A GIS model for site selection of industrial zones in Sri Lanka (A case study of kesbewa divisional secretariat division in Colombo district). Int. J. Sci. Eng. Res. 6, 172-175.

Forslid, R., Haaland, J. I., Midelfart, K. H. (2002). A U-shaped Europe? A simulation study of industrial location. Journal of International Economics, 57, 97-273. DOI:PII: S0022 1996(01)00155-6

Gollin, D., Jedwab, R., & Vollrath, D. (2016). Urbanization with and without industrialization. Journal of Economic Growth, 21(1), 35?70.

Guner, H. A. A., & Yumuk, H. A. (2014). Application of a fuzzy inference system for the prediction of longshore sediment transport. Applied Ocean Research, 48, 162?175.

Hazra, P. B., & Acharya, A. (2015). Geoinformatics for Industrial Siting?A Case Study of Puruliya District, West Bengal. International Journal of Advanced Remote Sensing and GIS, 4(1), 817-827.

?

Hndoosh, R., Saroa, M., & Kumar, S. (2012). Fuzzy and adaptive neuro-fuzzy inference system of washing machine. European Journal of Scientific Research, 86(3), 443-459.

?

Jones, C., Dunse, N., Martin, D. (2005, October). The nature and structure of spatial industrial property markets. Land Use Policy, 22(4), 281-290. doi:https://doi.org/10.1016/j.landusepol.2003.05.002.

Kalantari, K., Choobchian, S., Karami, M. (2013). Site selection for Handy Craft Market in South Khorasan Province Using Analytical Hierarchy Process (AHP). Journal of Urban - Regional Studies and Research, 4(15), 21-36.

Kamali, M., Alesheikh, A. A., Khodaparast, Z., Mahmoud, S., Hosseinniakani, S. M., Borazjani, S. A., & AlaviBorazjani, S. A. Application of Delphi-AHP and Fuzzy-GIS approaches for site selection of large extractive industrial units in Iran, J. Settlements Spat. Plan. 6 (2015) 1?7.

?

Kamali, M., Alesheikh, S., Alavi Borazjani, A., Jahanshahi, A., Khodaparast, Z., & Khalaj, M. (2017). Delphi-AHP and weighted index overlay-GIS approaches for industrial site selection case study: large extractive industrial units in Iran. Journal of Settlements and Spatial Planning, 8(2), 99-105.

?

Karimi, M., Saadi Mesgari, M., & Sharifi, M. A. (2010). Modeling ecological capability using fuzzy logic: case study area: Borkhar and Meymeh township. Iranian journal of remote sensing and GIS, 1(1), 17-38.

Khoshmouz, G., Talei, M., Mansourian, A. (2010). Genetic Algorithms and Land Planning Problems, Quarterly Journal of Environmental Based Territorial Planning, 11 (3), 86-97.

Kocyigit, N. (2015). Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network. The International Journal of Refrigeration, 50, 69?79.

Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 24, 755?762. DOI:10.1007/s10845-012-0623-z.

Leigh, N. G., & Hoelzel, N. Z. (2012). Smart growth?s blind side: Sustainable cities need productive urban industrial land. Journal of the American Planning Association, 78(1), 87?103.

Li, Y., & Zhu, K. (2017). Spatial dependence and heterogeneity in the location processes of new high?tech firms in Nanjing, China. Papers in Regional Science, 96(3), 519-535.

?

LUPD. (2008). Land Use Planning Studies in the Esfahan Province, Iran.

Makhdoum, M. F. (1999). Fundamental of Land-use Planning. (3rd, Ed.) Publication of Tehran University.

Management and Planning Organization (2015). Statistical Yearbook of Markazi Province, 985.

Masoumi, Z., Mansourian, A., Mesgari, M. (2010). Application of Multiobjective Genetic Algorithm in Location Studies of Industrial Land uses, Journal of Remote Sensing and GIS, 2(4), 1-22.

Muhsin, N., Ahamed, T., Noguchi, R., 2017. GIS-based multi-criteria analysis modeling used to locate suitable sites for industries in suburban areas in Bangladesh to ensure the sustainability of agricultural lands. Asia Pac. J. Reg. Sci. 2, 35e64. https://doi.org/10.1007/s41685-017-0046-0.

Nasorllahi, Z., Salehi, F. (2012). Criteria of Eco-Industrial Park Location and their Prioritization with Using Fuzzy AHP and Triangular Fuzzy Number. Quarterly Journal of Economic Growth and Development Research, 2(7), 66-51.

Nasrollahzadeh, K.,& Basiri, M. M. (2014). Prediction of shear strength of FRP reinforced concrete beams using a fuzzy inference system. Expert Systems with Applications, 41, 1006?1020.

Pan, Y., Roth, A., Yu, Z., Doluschitz, R. (2010). The Impact of Variation in Scale on the Behavior of a Cellular Automata Used for Land-use Change Modelling. Comput. Environ. Urban. Article in the Press.

Papoli Yazdi, M. H., Rajabi Senajardi, H. (2011) Theories of the City and the Periphery, SAMT Publications, Sixth Edition, Tehran.

Rachdawong, P, Apawootichai, S (2003), An Environmental Framework for Preliminary Industrial Estate Site Selection using a Geographical Information System, Asian J. Energy Environ, Vol 3, Issues 3-4, pp 119-138.

Ramaul, N. K., & Ramaul, P. (2016). Determinants of industrial location choice in India: a polychoric principal component analysis approach. Journal of Quantitative Economics, 14(1), 29-56.?

Ramya, S., & Devadas, V. (2019). Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. Journal of Cleaner Production, 238, 117872.

?

Rawstron, E. M. (1958). Three Principles of Industrial Location. Transactions and Papers (Institute of British Geographers), 25, 135-142. DOI:DOI: 10.2307/621183.

Reisi, M., Afzali, A., & Lu, A. (2018). Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran. Environmental Earth Sciences, 77(14), 1-13.

?

Reisi, M.; Aye, L.; Soffianian, A., (2011). Industrial site selection by GIS in Isfahan, Iran. Geoinformatics, IEEE., 19: 24-36.

Rezaei, A., Ranjbaran, S. (2009). Applied Genetic and Fuzzy Algorithm Training in MATLAB Software, Padideh Publishing, First Edition.

Rikalovic, A., & Cosic, I. (2015). A fuzzy expert system for industrial location factor analysis. Acta Polytechnica Hungarica, 12(2), 34-51.

?

Rikalovic, A., Cosic, I., & Lazarevic, D. (2014). GIS-based multi-criteria analysis for industrial site selection. Procedia Engineering, 69(12), 1054-1063.?

Rikalovic, A., Cosic, I., Labati, R. D., & Piuri, V. (2015). A comprehensive method for industrial site selection: the macro-location analysis. IEEE Systems Journal, 11(4), 2971-2980.

?

Rikalovic, A., Cosic, I., Labati, R. D., & Piuri, V. (2017). Intelligent decision support system for industrial site classification: A GIS-based hierarchical neuro-fuzzy approach. IEEE Systems Journal, 12(3), 2970-2981.

?

Shiri, K., (2001). Application of Models in Locating Industrial Estates Case Study: Gachsaran City, MA Thesis, Shahid Beheshti University, School of Architecture and Urban Planning.

Smith, A. (2010). The Wealth of Nations: An inquiry into the nature and causes of the Wealth of Nations. Harriman House Limited.?

Soleimani, M., Zangane, A. (2005). Location of Industrial Estate and its Environmental Impacts on Arak City, Geographical Research Quarterly, 37 (2), 33-49.

Stewart, T.J, Janssen, R., Herwijnen, M.V. (2004). A genetic algorithm approach to multi-objective land-use planning. Computers & Operations Research, 31, 2293-2313. doi:https://doi.org/10.1016/S0305-0548(03)00188-6

Taherkhani, M. (2008). The application of the TOPSIS technique in location prioritization of changing industries establishment in rural areas. The quarterly Economic Research 7(3), 59-73.

Takano, K., Tsutsumi, M., & Kikukawa, Y. (2018). Spatial modeling of industrial location determinants in Japan: Empirical analysis using spatial econometric approaches. Review of Urban & Regional Development Studies, 30(1), 26-43.

?

Van Vliet, J., White, R., Dragicevic, S. (2009). Modeling Urban Growth Using a Variable Grid Cellular Automaton. Comput. Environ. Urban, 33, 35-43. DOI:DOI: 10.1016/j.compenvurbsys.2008.06.006

Webber, M. J., (2020). "Industrial Location", Web Book of Regional Science. 9

Yanar, T. A., & Akye, Z. (2007). Artificial neural networks as a tool for site selection within GIS. Geodetic and Geographic Information Technologies, Natural and Applied Sciences, 6531.

?

Yasouri, M. (2013). The Survey of the Status of Industries location and Industrial Estates in Mashhad County. Town and Country Planning, 5(2), 261-288. DOI: 10.22059/jtcp.2013.50085.

Zhang, L., Yue, W., Liu, Y., Fan, P., & Wei, Y. D. (2018). Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities, 78, 96?107.

Downloads

Published

2021-12-17

Issue

Section

Research Articles