TransJakarta Service Evaluation in Controlling COVID-19 Transmission Using Twitter Sentiment Analysis


  • Siti Nurlaela Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Phone: +6288 1698 4588 and fax +6231 5922425
  • Andrew William Ernest and Young



COVID-19, Public Transport, Sentiment Analysis, TransJakarta, Twitter


This study attempted to understand passenger perception of using public transport by utilizing Twitter data about the services of the TransJakarta Busway. Tweets were the main data source to capture users? responses toward these services. Users? perceptions were analyzed by sentiment analysis using a nae Bayes algorithm. Furthermore, content analysis was used to inform improvements in service maintenance. The findings showed that the pandemic had a major impact on TransJakarta services, from a decrease in users, route closures, and fleet reductions to changes in user behavior. Most Tweets were negative regarding (1) poor bus frequency, leading to long queues and passenger overcrowding at bus stops and inside buses; (2) failure to maintain social distancing measures; (3) frequent violations of the 50% bus capacity reduction during peak hours, and showing a lack of consideration in measuring demand size during peak hours; (4) staff?s weak control of implementing the health protocol exacerbated poor services. This study suggests service improvement based on peak hour demand analysis to offset the implications of a 50% capacity restriction by providing proper bus frequencies and headway arrangements considerable enough to avoid crowding, followed by optimal monitoring of health protocol by staff. Tweet data may inform poor management in controlling the transmission of COVID-19 on public transportation. Hence, using Twitter data could replace conventional data collection methods like user interviews. Beneficial information from Tweet data can be captured at relatively low costs. Therefore, it may aid the evaluation of PPKM policy implementation to create more resilient public transportation during pandemics.


Adrian, K. (2020, 7 October). Risiko Penularan Virus Corona. [https://]. Retrieved on 15 July 2021.

Aggarwal, C. C., & Xhai, C. (2012). A survery of text clustring algorithms. Mining Text Data, 8, 77?128.

Alexopoulus, K & Wyrowski, L. (2015). Sustainable Urban Mobility and Public Transport in UNECE Capitals. New York: United Nations Publications.

Alhikam, H. A. (2020, 5 August). Ada 88 Juta Pergerakan Orang di Jabodetabek Dalam Sehari []. Retrieved on 5 April 2021.

Anastasia, Ari, I. R. D., & Agustin, I. W. (2015). Evaluasi Kinerja Pelayanan Angkutan Kota Di Kota Palu (Studi Kasus Trayek Mamboro Manonda Line B2). The Indonesian Green Technology Journal, 4(3).

Ang, Z. Y., Cheah, K. Y., Jailani, A. S., Chan, M., Kong, Y. L., & Sararaks, S. (2020). Public Transport in the Era of COVID-19: Comparison of Infection, Prevention and Control Measures Taken by Malaysia, Singapore, and China. August, pp. 0-17.

Badan Pusat Statistik. (2021). Provinsi DKI Jakarta Dalam Angka 2021. Jakarta: Badan Pusat Statistik.

Banda, JM, Tekumalla R, Wang G, Yu J, Liu T, Ding Y, Chowell G (2020) A large-scale COVID-19 twitter chatter dataset for open scientific research?an international collaboration. arXiv:2004.03688.

Burton SH, Tanner KW, Giraud-Carrier CG, West JH, Barnes MD (2012) ?right time, right place? health communication on twitter: value and accuracy of location information. J Med Internet Res 14(6):e156.

Carley KM, Malik M, Landwehr PM, Pfeffer J, Kowalchuck M (2016) Crowd sourcing disaster management: The complex nature of twitter usage in Padang Indonesia. Saf Sci 90, 48?61.

Chatfield AT, Scholl HJJ, Brajawidagda U (2013) Tsunami early warnings via twitter in government: Net-savvy citizens? co-production of time-critical public information services. Govern Inf Quart 30(4):377?386.

Centers for Disease Control and Prevention. (2020, 31 December). Employer Information for Bus Transit Operators. []. Retrieved on 22 April 2021.

Chin, A. W. H., et al. (2020). Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020. S2666-5247(20)30003-3. (2016, 22 November). Indonesia Pengguna Twitter Terbesar Ketiga di Dunia. [ datapublish/2016/11/22/indonesia-pengguna-twitter-terbesar-ketiga-di-dunia]. Retrieved on 5 April 2021.

Eboli, Laura & Mazzulla, Gabriella. (2007). Service Quality Attributes Affecting Customer Satisfaction for Bus Transit. Journal of Public Transportation. 10. 10.5038/2375-0901.10.3.2.

Fitri, E. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest And Support Vector Machine. Jurnal Transformatika, 18(1), p.71-80.

Gaus, A., Sultan, M. A., Wahab, I. H. A., Abdullah, A.M., & Nu?man. (2020). Dampak Pandemi COVID-19 Terhadap Tingkat Pelayanan Moda Transportasi SpeedboatTidore-Sofifi. Jurnal Rekayasa Konstruksi Mekanika Sipil (JRKMS), 3(2), p.89-96.

Glaeser, E. L., Gorback, C., & Redding, S. J. (2020, October). How Much Does COVID-19 Increase With Mobility? Evidence From New York And Four Other U.S. Cities. Cambridge and Princeton: NBER Working Paper No. 27519.

Gunawan, F., Fauzi, M. A., & Adikara, P. P. (2017). Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes and Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile). Systemic: Information System and Informatics Journal, 3(2), 1?6.

Hafid, Feisal (2017) Analisis Swot Terhadap Pelayanan Pasien Rawat Jalan Ditinjau Dari Etika Kerja Islam (Studi Pada RSUD Kota Agung). Undergraduate thesis, UIN Raden Intan Lampung.

Han, J., & Kamber, M. (2014). Data mining: Data mining concepts and techniques (second ed.). ELSEVIER. ICMIRA.2013.45

Hubert et al. (2021). Classifying Promotion Images Using Optical Character Recognition and Nae Bayes Classifier. 5th International Conference on Computer Science and Computational Intelligence 2020, pp. 498-506.

Imran M, Castillo C, Diaz F, Vieweg S (2015) Processing social media messages in mass emergency: A survey. ACM Comput Surv (CSUR) 47(4), pp. 1-38.

Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: Artificial intelligence for disaster response. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 159-162.

Jumeilah, F. S. (2017). Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian. Jurnal Resti (Rekayasa Sistem and Teknologi Informasi), 1(1), pp. 19-25.

Kalyanam J, Quezada M, Poblete B, Lanckriet G (2016). Prediction and characterization of high-activity events in social media triggered by real-world news. PloS one 11(12):e0166694.

Kementerian Perhubungan Republik Indonesia. (2020). Peraturan Menteri Perhubungan Republik Indonesia Nomor Pm 18 Tahun 2020.

Kohavi, R. (1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Vol. 2, Montreal, 20-25 August 1995, pp. 1137-1145.

Kusumawardani, A. D. W. (2020). Identifikasi Kualitas Pelayanan Transjakarta Pada Masa ?New Normal? Pandemi COVID-19 (Studi Kasus: Koridor 1 Blok M ? Kota). Skripsi (S1), Institut Teknologi Bandung.

Lamsal, R. (2021). Design and analysis of a large-scale COVID-19 Tweets dataset. Applied Intelligence, 51 (5), pp. 2790?2804.

Lan, F.-Y. et al. (2020) ?Work-related COVID-19 transmission?, MedRxiv, 286.

Lewis, D. (2021, 30 March). Why indoor spaces are still prime COVID hotspots. []. Retrieved on 15 Juli 2021.

Liu, B. (2010). Sentiment analysis and subjectivity, invited chapter for the handbook of natural language processing (2nd ed.). London/ Boca Raton: Chapman and Hall/CRC.

Mahmoud, M., & Hine, J. (2016). Measuring the Influence of Bus Service Quality on The Perception of Users. Transportation Planning and Technology. Vol. 39(3), pp. 284-299. (2021, 23 February). 140 Juta Pengguna Media Sosial di Indonesia Aktif Selama Pandemi. [ /humaniora/386622/140-juta-pengguna-media-sosial-di-indonesia-aktif-selama-pandemi]. Retrieved on 20 June 2021.

Minhans, A., Shahid, S., & Hassan, S. (2015). Assessment of Bus Service-Quality using Passengers? Perceptions. Jurnal Teknologi. 73. 10.11113/jt.v73.4290.

Napitupulu. H. M. (2020). Mengeksplorasi And Membandingkan Kualitas Layanan Transportasi Umum Dari Media Sosial: Studi Kasus Jabodetabek. Tesis (S2). Institut Teknologi Bandung.

Nouvellet, P., Bhatia, S., Cori, A., Baguelin, M.m Bhatt, S., ? Cooper, L.V. (2021). Reduction in mobility and COVID-19 transmission. Nature Communications, 12(1). doi: 10.1038/s41467-021021358-2.

Nugroho, R. S. (2020, 3 Juni). Indonesia Negara Paling Cerewet Unggah Twit ?New Normal? di Twitter. []. Retrieved on 5 April 2021.

Parasuraman, A Parsu & Zeithaml, Valarie & Berry, Leonard. (1988). SERVQUAL: A multiple- Item Scale for measuring consumer perceptions of service quality. Journal of retailing.

Pemerintah Provinsi DKI Jakarta. (2019). Peraturan Gubernur Provinsi Daerah Khusus Ibukota Jakarta Nomor 13 Tahun 2019 tentang Perubahan atas Standar Peraturan Gubernur Nomor 33 Tahun 2017 tentang Standar Pelayanan Minimal Layanan Angkutan Umum TransJakarta.

Pusparisa, Y. (2021, 29 Juni). Tingkat Penularan Virus Corona Varian Delta Mencapai 97%. [ 29/tingkat-penularan-virus-corona-varian-delta-mencapai-97]. Retrieved on 15 July 2021.

RAD Research. (2020). Survei Kepuasan Pelanggan Layanan TransJakarta Tahun 2020.

RAD Research. (2019). Survei Kepuasan Pelanggan Layanan TransJakarta Tahun 2019.

Rahmawati, C. and Novitasari, Y. (2010) Evaluasi Kinerja Angkutan Umum Kota Semarang Studi Kasus: Bus DAMRI AC B.04 Trayek Ngaliyan-Pucang Gading And Bus Brt Trayek Magkang-Penggaron (Evaluation of Semarang?s City Mass Transport Performance-Case of DAMRI AC B.04 route Ngaliyan-Pucang Gading and BRT route Mangkang-Penggaron). Undergraduate thesis, F. TEKNIK UNDIP.

Rizani, M. D. (2019). Pengelolaan Sanitasi: Permukiman Wilayah Perkotaan Dengan Pendekatan Teknokratik And Partisipatif (TEKNOPARTI). Surabaya: Media Sahabat Cendekia.

Satuan Tugas Penangangan COVID-19 (2021). Surat Edaran No. 12 Tahun 2021 tentang Ketentuan Perjalanan Orang Dalam Negeri Dalam Masa Pandemi Corona Virus Disease 2019 (COVID-19).

Shen, J., Duan, H., Zhang, B., Wang, J., Ji, J. S., Wang, J., Pan, L., Wang, X., Zhao, K., Ying, B., Tang, S., Zhang, J., Liang, C., Sun, H., Lv, Y., Li, Y., Li, T., Li, L., Liu, H., Zhang, L., ? Shi, X. (2020). Prevention and control of COVID-19 in public transportation: Experience from China. Environmental pollution (Barking, Essex: 1987), 266 (Pt. 2), 115291.

Syadid, F. (2019). Analisis Sentimen Komentar Netizen Terhadap Calon Presiden Indonesia 2019 Dari Twitter Menggunakan Algoritma Term Frequency-Invers Document Frequency (Tf- Idf) And Metode Multi Layer Perceptron (Mlp) Neural Network. Skripsi Universitas Islam Negeri Syarif Hidayatullah Jakarta, pp. 1-89.

TransJakarta. (2021, 4 July). Penyesuaian Operasional Transjakarta di Masa PPKM Darurat. []. Retrieved on 16 July 2021.

TransJakarta (2020, 28 June). Transjakarta Pastikan Kesiapan Teknis and Operasional Mitra Operator Sesuai Protokol Kesehatan Memasuki Masa Harapan Baru Menghadapi COVID19. []. Retrieved on 22 April 2021.

Vitrano, C. (2020). COVID-19 and Public Transport: A Review of the International Academic Literature. K2 Working Paper 2021:1.

World Health Organization. (2020, 13 December). Coronavirus disease (COVID-19): How is it transmitted? [ :~:text=%E2%80%A2%20Current%20evidence%20suggests%20that,nose%2C%20or%20mouth.]. .Retrieved on 15 July 2021.

Yoon, S., Elhadad, N., & Bakken, S. (2013). A Practical Approach for Content Mining of Tweets. American Journal of Preventive Medicine, 45(1), pp. 122-129.

Zhang, L., Darzi, A., Ghader, S., Pack, M. L., Xiong, C., Yang, M., Sun, Q., Kabiri, A., & Hu, S. (2021). Interactive COVID-19 Mobility Impact and Social Distancing Analysis Platform. Transportation Research Record, 0(0).






Research Articles