IDENTIFIKASI SEBARAN LOGAM BERAT ARSEN (As) DARI SISTEM PANAS BUMI PADA AIR TANAH DANGKAL DENGAN METODE KRIGING
Abstract
Abstrak: Arsen adalah elemen jejak bersifat toksik dan dapat menyebabkan berbagai dampak negatif terhadap kesehatan manusia. Salah satu sumber paparan arsen untuk manusia adalah melalui air tanah. Air tanah yang terindikasi memiliki kandungan arsen tinggi salah satunya adalah air tanah yang berada pada lokasi yang terpengaruh oleh sistem panas bumi. Kontaminasi arsen pada air tanah merupakan suatu permasalahan global yang cukup serius dan telah didapati kontaminasi arsen pada air tanah terjadi di Taiwan, Chile, Bangladesh, Argentina, Meksiko, China, dan India. Sub-DAS Ciwidey merupakan area di salah satu lereng Gunung Patuha yang terletak di selatan Cekungan Bandung memiliki banyak manifestasi panas bumi yang merupakan salah satu sumber polutan alami yang merupakan polutan vulkanogenik. Penelitian yang dilakukan pada sampel air tanah dangkal di Sub-DAS Ciwidey menunjukkan bahwa konsentrasi arsen berkisar 0.001 mg/l sampai dengan 3.25 mg/l, melebihi batas aman yang telah ditetapkan oleh WHO dan Indonesia yaitu 0.01 mg/l. Metode geostatistik dengan Simple Kriging tanpa transformasi memberikan hasil prediksi yang paling akurat. Interpretasi kehadiran arsen berdasarkan analisa geokimia air tanah menggunakan Diagram Schoeller menunjukkan hasil bahwa air tanah di lokasi studi berasal dari sumber yang sama, dan terpengaruh oleh sistem panas bumi. Dengan demikian, maka diperkirakan sebanyak 430,600 jiwa berisiko terpapar oleh kontaminasi arsen di air tanah dangkal yang melebihi batas aman yang telah ditetapkan WHO.
Kata kunci: arsen, panas bumi, air tanah dangkal, Sub-DAS Ciwidey, metode kriging
Abstract: Arsenic is a toxic trace element that can cause various negative impacts on human health. One of arsenic exposure source for humans is through groundwater. One of groundwater indicated with high arsenic content, is groundwater in a location affected by geothermal systems. Arsenic contamination in groundwater is a serious global problem and arsenic contamination in groundwater has occurred in Taiwan, Chile, Bangladesh, Argentina, Mexico, China and India. Ciwidey Sub-watershed is an area on Mount Patuha slope located in the south of Bandung Basin has many geothermal manifestations which is one source of volcanogenic pollutant, including arsenic. A study conducted on shallow groundwater samples in Ciwidey Sub-watershed showed that arsenic concentrations ranged from 0.001 mg/L to 3.25 mg/L, exceeded the safe limits established by WHO and Indonesia. Geostatistical methods with Simple Kriging without transformation provide the most accurate prediction results. Interpretation of arsenic presence based on groundwater geochemical analysis using Schoeller Diagram shows the result that groundwater at the study site comes from the same source, which is influenced by geothermal system. Thus, an estimated 430,600 people are at risk of exposure to arsenic contamination in shallow groundwater beyond the safe limits established by WHO.
Keywords: arsenic, geothermal, shallow groundwater, Ciwidey Sub-watershed, kriging method
References
Delhi, India using geostatistical approach, Environmental Monitoring and Assessment, Vol 167, pp. 599-615 (2010)
Badan Pusat Statistik Kabupaten Bandung, 2017, Kabupaten Bandung dalam Angka
Bates, M. N., Rey, O. A., Biggs, M. L., Hopenhayu, C., Moore, L. E., Kalman, D., Steinmaus, C., Smith, A. H., Case-control study of bladder cancer and exposure to arsenic in Argentina, Am. J. Epidemiol, 159, pp. 381 - 389 (2004)
Bearsen, B., 2014, http://www.awwa-hiwps.org/uploads/4/6/2/6/46269853/bbearden_supplemental_gis_interpolation.pdf
Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. G., Wai, C. M., Arsenic species in groundwaters of the blackfoot disease area, Taiwan, Environ Sci Technol, 33, pp. 877 - 881 (1994)
EPA SW-846 Method 6020B: Inductively Coupled Plasma-Mass Spectrometry (https://www.epa.gov/sites/production/files/2015-12/documents/6020b.pdf)
Ferreccio, C., Sancha A. M., Arsenic exposure and its impact on health in Chile, J Health Populnutr pp. 164 - 175 (2006)
Fujiona, Y., Guoc, X., Liuc, J., Youc, L., Miyataked, M., Yoshimura, T., Japan Inner Mongolia Arsenic Pollution (JIAMP), Study group mental health burden amongst inhabitants of an arsenic-affected area in Inner Mongolia, China, Social Science & Medicine, 59, pp. 1969 - 1973 (2004)
Herdianita N R, Priadi B, Arsenic and Mercury concentrations at several geothermal systems in West Java, Indonesia, ITB J. Sci. Vol 40 A No. 1 pp 1-14 (2008)
Hiscock, K. (2005), Hydrogeology: Principles and Practice, 389 halaman. Oxford: Blackwell Science Ltd.
Hossain, F., Hill, J., Bagtzoglou, A., C., Geostatistically based management of arsenic contaminated ground water in shallow wells of Bangladesh, Water Resour Manage 21. pp 1245 - 1261 (2007)
Iskandar, I., Notosiswoyo, S., Purnadi, C., Pasaribu, T., Type and Origin of Springs and Hotsprings at Surrounding Ridges of Bandung Basin, Related with its Potential Natural Contamination, Procedia Earth and Planetary Science 6. pp 262 - 268 (2013)
Jangle, N., Sharma, V., Dror, D. M., Statistical geospatial modelling of arsenic concentrartion in Vaishali District of Bihar, India, Sustain Water Resour, Manag, pp 285 - 295, (2016)
Karim, M. M., Arsenic in groundwater and health problems in Bangladesh, Water Res. 34(1). pp 304 - 310 (2000)
Koesmono, M., Kusnama, Suwarna, N., (1996) Peta Geologi Lembar Sindangbarang dan Bandarwaru, Jawa, Pusat Penelitian dan Pengembangan Geologi
Mazumder, D. G., Dasgupta, U. B., Chronic arsenic toxicity: studies in West Bengal India, Kaohsiung Journal of Medical Sciences, 27, pp. 360 - 370 (2011)
Menteri Kesehatan Republik Indonesia, 2010, Peraturan Menteri Kesehatan Republik Indonesia Nomor 492/Menkes/Per/IV/2010
NRC, 1999, Arsenic in Drinking Water, National Academy Press, Washington, D.C.
Prilia, D., & Kamil, I. M. (2011). PENENTUAN KUALITAS AIR TANAH DANGKAL BERDASARKAN PARAMETER MIKROBIOLOGI (STUDI KASUS: KECAMATAN UJUNGBERUNG, KOTA BANDUNG). Jurnal Teknik Lingkungan, 17(2), 11-21.
Purnomo, B. J., Pichler, T., Geothermal systems on the island of Java, Indonesia, Journal of Volcanology and Geothermal Research 285. pp 47 - 59 (2014)
Roy, P., K., Hossain, S. S., Predicting arsenic concentration in groundwater of Bangladesh using Bayesian geostatistical model, Environ Ecol Stat, pp. 583 - 597, (2014)
Smedley P. L., Kinniburgh D. G., A review of the source, behavior, and distribution of arsenic in natural waters, Appl. Geochem 17. pp 517-568 (2002)
Smith, A. H., Goycolea, M., Haque, R., Biggs, M. L., Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic drinking water, American Journal Epidemiology, 147, pp. 660 - 669 (1998)
Sriwana, T., van Bergen, M. J., Sumarti, S., de Hoog, J. C. M., van Os, B. J. H., Wahyuningsih, R., Dam, M. A. C., Volcanogenic pollution by acid water discharges along Ciwidey River, West Java (Indonensia), Journal of Geochemical Exploration 62. pp 161 - 182 (1998)
Venkatraman, S., Chung, A. Y., Kim, T. H., Kim, B. W., Selvam, S., Geostatistical techniques to evaluate groundwater contamination and its source in Miryang City, Korea, Environ Earth Sci (2016) 75.994
Webster, J. G. dan Nordstrom, D. K. (2002), Arsenic in Groundwater, Chapter 4: Geothermal Arsenic: The source, transport and fate of arsenic in geothermal systems, 475 halaman. New York: Kluwer Academic Publisher.
WHO, 2006, Guidelines for Drinking-water Quality, WHO Press, Geneva
Wood, C., Miller, B., 2016,