Nanucellulose from Tofu Production Waste for Wastewater Treatment
DOI:
https://doi.org/10.5614/MESIN.2023.29.2.2Abstract
Solid waste from tofu production, also known as okara, has numerous applications and can produce high-value-added products. However, the utilization of okara in Indonesia is not yet significant. This written work proposes okara as a source of nanocellulose to produce wastewater adsorbents in freshwater by fabricating it as aerogels and hydrogels. Wastewater is highly hazardous to the environment and living organisms as it can contain saturated salts, heavy metals, organic compounds, oil emulsions, dyes, and even microbes as pollutants that can lead to various diseases or death. Therefore, research on biosorbents is always a hot topic. Biosorption is the process of binding metal ions into the cellular structure of biological materials. Lignocellulosic biosorbents have high adsorption properties due to their ion exchange capability. Okara biosorbent can increase the absorption capacity of Pb2+ ions by up to 20% compared to conventional absorbents. The soybean skin component could also remove contaminated textile dyes from water. Additionally, the low lignin content in okara makes it easier to utilize than other lignocellulosic materials. This research study also shows that okara-based nanocellulose aerogels can maintain their shape or exhibit full shape recovery properties even after being used repeatedly.
References
Liu, H.M. & Li, H.Y., Application and Conversion of Soybean Hulls, Soybean - The Basis of Yield, Biomass and Productivity, Minobu Kasai, Intech, pp. 111-132, 2017.
Faisal, M., Gani, A., Mulana, F. & Daimon, H., Treatment and Utilization of Industrial Tofu Waste in Indonesia, Asian J. Chem., 28(3), pp. 501?507, 2016.
Mahmud, M.A. & Anannya, F.R., Sugarcane bagasse - A source of cellulosic fiber for diverse applications, Heliyon, 7(8), article number 07771, 2021.
Chen, X., Zhang, K., Xiao, L.P., Sun, R.C. & Song, G., Total utilization of lignin and carbohydrates in Eucalyptus grandis: An integrated biorefinery strategy towards phenolics, levulinic acid, and furfural, Biotechnol Biofuels, 13(2), pp. 1?10, 2020.
Chen, X., Li, H., Yao, S., Wang, C., Chen, X., Guo, H., Xiong, L., Zhang, H. & Chen, X., The alleviation of lignin inhibition on enzymatic hydrolysis of cellulose by changing its ultrastructure, Industrial Crop. Prod., 185, Article number 115108, 2022.
Zhu, J., Tan, W.K., Song, X., Gao, Z., Wen, Y., Ong, C.N., Loh, C.S., Swarup, S. & Li, J., Converting Okara to Superabsorbent Hydrogels as Soil Supplements for Enhancing the Growth of Choy Sum (Brassica sp.) under Water-Limited Conditions, ACS Sustain. Chem. Eng., 8(25), pp. 9425?9433, 2020.
Nishat, A., Yusuf, M., Qadir, A., Ezaier, Y., Vambol, V., Khan, M.I., Moussa, S. Ben, Kamyab, H., Sehgal, S.S., Prakash, C., Yang, H.-H., Ibrahim, H. & Eldin, S.M., Wastewater treatment: A short assessment on available techniques, Alexandria Eng. J., 76, pp. 505?516, 2023.
Bryukhov, M. & Ulrikh, D., Wastewater treatment: Methods and prospects, IOP Conf. Ser. Earth Environ. Sci., 1061(1), article number 012049, 2022.
Li, B., Qiao, M. & Lu, F., Composition, Nutrition, and Utilization of Okara (Soybean Residue), Food Rev. Int., 28(3), pp. 231?252, 2012.
Cui, X., Lee, J.J.L. & Chen, W.N., Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics, Sci. Rep., 9(1), pp. 1?9, 2019.
van der Riet, W.B., Wight, A.W., Cilliers, J.J.L. & Datel, J.M., Food chemical investigation of tofu and its byproduct okara, Food Chem., 34(3), pp. 193?202, 1989.
Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suez, M.J., Zapata-Revilla, M.A. & Tenorio-Sanz, M.D., Pea pod, broad bean pod and okara, potential sources of functional compounds, Lwt, 43(9), pp. 1467?1470, 2010.
Arboleda, J.C., Hughes, M., Lucia, L.A., Laine, J., Ekman, K. & Rojas, O. J., Soy protein-nanocellulose composite aerogels, Cellulose, 20(5), pp. 2417?2426, 2013.
Saxena, S. & Rai, S., Okara: A Low-Cost Adsorbent for Textile Waste Water Treatment, Res. Biot., 2(2), pp. 26-29, 2020.
Elgarahy, A.M., Elwakeel, K.Z., Mohammad, S.H. & Elshoubaky, G.A., A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process, Clean. Eng. Technol., 4, article number 100209, 2021.
Si, R., Pu, J., Luo, H., Wu, C. & Duan, G., Nanocellulose-Based Adsorbents for Heavy Metal Ion, Polymers (Basel)., 14(24), pp. 1?23, 2022.
Wang, J. & Chen, C., Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol., 160, pp. 129?141, 2014.
Bilal, M., Rasheed, T., Sosa?Herndez, J.E., Raza, A., Nabeel, F. & Iqbal, H.M.N., Biosorption: An interplay between marine algae and potentially toxic elements?A review, Mar. Drugs, 16(2), pp. 1?16, 2018.
Farhan, M., Nurnl, A., Khalid, M., Syazwanie, N. & Aziz, A., Valorization of Okara biosorbent for Heavy Metal Removal, Chemical Engineering, Universiti Teknologi Mara, Selangor, 2015.
Hiew, B.Y.Z., Lee, L.Y. & Lee, X.J., Thangalazhy-Gopakumar, S., & Gan, S., Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal, Environ. Sci. Pollut. Res., 28(30), pp. 40608?40622, 2021.
Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Nguyen, T.V., Zhang, J., Liang, S., Chen, S.S. & Nguyen, N.C., A comparative study on different metal loaded soybean milk by-product ?okara? for biosorption of phosphorus from aqueous solution, Bioresour. Technol., 169, pp. 291?298, 2014.
Yu, C., Li, B., Zhang, K., Li, F. & Yan, H., Adsorption capacity of sodium dodecyl sulfate activation okara for methylene blue on aqueous solution, Korean J. Chem. Eng., 39(1), pp. 198?208, 2022.
Zhang, P., Yang, M., Lan, J., Huang, Y., Zhang, J., Huang, S., Yang, Y. & Ru, J., Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation, Toxics, 11(10), pp. 828, 2023.
Baldovi, A.A., Ayvazian, A.P., Coelho, L.H.G. & de Jesus, T.A., Biosorption of Pb(II) by Unmodified Banana Peel in Batch and Column Experiments: A Potential Green and Low-Cost Technology for Industrial Effluent Treatment, Water Air Soil. Pollut, 233, pp. 490, 2022.
Anwar, J., Shafique, U., Waheed-uz-Zaman, U., Salman, M., Dar, A. & Anwar, S., Removal of Pb(II) and Cd(II) from Water by Adsorption on Peels of Banana, Bioresour. Technol., 101, pp.1752?1755, 2010.
Khalil, U., Shakoor, M.B., Ali, S., Ahmad, S.R., Rizwan, M., Alsahli, A. A. & Alyemeni, M., Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation, Water, 13, pp. 263, 2021.
Heraldy, E., Lestari, W.W., Permatasari, D. & Arimurti, D., Biosorbent from Tomato Waste and Apple Juice Residue for Lead Removal, J. Environ. Chem. Eng., 6, pp. 1201?1208, 2018.
Amar, M.B., Walha, K. & Salvad V., Valorisation of Pine Cone as an Efficient Biosorbent for the Removal of Pb(II), Cd(II), Cu(II), and Cr(VI), Adsorpt. Sci. Technol., 2021, Article ID 6678530, 2021.
Li, W.C., Law, F.Y. & Chan, Y.H., Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk, Environ. Sci. Pollut. Res., 24(10), pp. 8903?8915, 2017.
Fertu, D.I., Dragoi, E.N., Bulgariu, L., Curteanu, S. & Gavrilescu, M., Modeling the Biosorption Process of Heavy Metal Ions on Neural Networks, Processes, 10(603), pp. 1?24, 2022.
Gao, J., Si, C.,& He, Y., Application of soybean residue (okara) as a low-cost adsorbent for reactive dye removal from aqueous solution, Desalin. Water Treat., 53(18), pp. 2266?2277, 2015.
Nguyen, H.T.A. & Pham, T.T., Brilliant Green Biosorption from Aqueous Solutions on Okara: Equilibrium, Kinetic and Thermodynamic Studies, J. Water Environ. Technol., 21(1), pp. 30?40, 2023.
Magalhs-Ghiotto, G.A.V., Natal, J.P.S., Nishi, L., Andrade, M.B.de, Gomes, R.G. & Bergamasco, R., Okara and okara modified and functionalized with iron oxide nanoparticles for the removal of Microcystis aeruginosa and cyanotoxin, Environ. Technol., 44(18), pp. 2737?2752, 2023.
Gao, J.-F., Wang, J.-H., Yang, C., Wang, S.-Y. & Peng, Y.-Z., Binary biosorption of Acid Red 14 and Reactive Red 15 onto acid treated okara: Simultaneous spectrophotometric determination of two dyes using partial least squares regression, Chem. Eng. J., 171(3), pp. 967?975, 2011.
Natal, J.P.S., Cusioli, L.F., Vieira, G.A., Magalhs-Ghiotto, Bergamasco, R., & Gomes, R. G., Removal of methylene blue and safranin orange pollutants from liquid effluents by soy residue, Can. J. Chem. Eng., 101(10), pp. 5561?5575, 2023.
Wu, C., McClements, D.J., He, M., Zheng, L., Tian, T., Teng, F. & Li, Y., Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments, Carbohydr. Polym., 255, article number 117364, 2021.
Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A & Guan, G., Nanocellulose: Extraction and application, Carbon Resour. Convers., 1(1), pp. 32?43, 2018.
Reshmy, R., Thomas, D., Philip, E., Paul, S.A., Madhavan, A., Sindhu, R., Binod, P., Pugazhendhi, A., Sirohi, R., Tarafdar, A. & Pandey, A., Potential of nanocellulose for wastewater treatment, Chemosphere, 281, article number 130738, 2021.
Rijal, M.S., Nasir, M., Purwasasmita, B.S. & Asri, L.A.T.W., Cellulose nanocrystals-microfibrils biocomposite with improved membrane performance, Carbohydr. Polym. Technol. Appl., 5, article number 100326, 2023.
Li, P., Lei, H., Jian, B., Liu, R., Zhou, M., Wang, Y., Liu, H., Wang, Y. & Zhou, B., Okara Cellulose Nanofibrils Produced by Pretreatment with Sustainable Deep Eutectic Solvent Coupled with Various Mechanical Treatments, Pap. Biomater., 7(2), pp. 46?55, 2022.
Tofanica, B.M., Belosinschi, D. & Volf, I., Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries, Gels, 8(8), pp. 1?17, 2022.
Al-Shehri, B.M., Khder, A.E.R.S., Ashour, S.S. & Hamdy, M.S., A review: The utilization of mesoporous materials in wastewater treatment, Mater. Res. Express, 6(12), article number 122002, 2019.
Jiang, F. & Hsieh, Y. Lo, Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing, J. Mater. Chem. A, 2(2), pp. 350?359, 2014.
Salama, A., Abouzeid, R., Leong, W.S., Jeevanandam, J., Samyn, P., Dufresne, A., Bechelany, M. & Barhoum, A., Nanocellulose-based materials for water treatment: Adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration, Nanomaterials, 11(11), 2021.
Ji, Y., Wen, Y., Wang, Z., Zhang, S. & Guo, M., Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(II) and organic pollutants removal, J. Clean. Prod., 255, article number. 120276, 2020.
Mo, L., Shen, Y., Tan, Y. & Zhang, S., Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions, Int. J. Biol. Macromol., 193B, pp. 1488?1498, 2021.
