Bottom-up and top-down control in a multitrophic system: the role of nutrient limitation and infochemical-mediated predation in a plankton food-web model

Nicola D Walker, Hadi Susanto, Michael Steinke, Edward A. Codling

Abstract


Chemicals released following herbivore grazing on primary producers can promote multitrophic interactions by influencing the foraging behaviour of higher order predators. In particular, chemicals released during microzooplankton grazing on phytoplankton can act as infochemical cues that elicit foraging responses and improve search efficiency in carnivorous copepods. Models investigating such infochemical-mediated multitrophic interactions in the plankton are typically based on top-down control, where phytoplankton concentrations are controlled through predation and grazing from higher trophic levels. However, in marine environments nutrient limitation is an important factor that influences a food-web from below, and earlier models of this system only indirectly account for this by assuming predator-free growth is logistic with a fixed carrying capacity. Here we consider the dynamics of infochemical-mediated interactions in a marine system where nutrient limitation is modelled directly through an extended NPZ-style model. We show the one-parameter bifurcation behavior of the top-down model to change when the total nutrient availability is changed, and hence demonstrate phytoplankton bloom formation to be a function of both top-down and bottom-up processes.

Keywords


Plankton dynamics, Infochemicals, NPZ-model, Population dynamics, Food-webs, Multitrophic interactions

Full Text:

PDF

References


S. D. Archer, C. E. Stelfox-Widdicombe, P. H. Burkill, and G. Malin. A dilution approach to quantify the production of dissolved dimethylsulphoniopropionate and dimethyl sulphide due to microzooplankton herbivory. Aquat. Microb. Ecol., 23:131–145, 2001.

N. F. Britton. Essential Mathematical Biology. Springer, London, 2003.

S. Busenberg, S. K. Kumar, P. Austin, and G. Wake. The dynamics of a model of a plankton-nutrient interaction. Bull. Math. Biol., 52:677–696, 1990.

R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326:655–661, 1987.

A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM T. Math. Software., 29:141–164, 2003.

A. M. Edwards. Adding detritus to a nutrient-phytoplankton-zooplankton model: a dynamical-systems approach. J. Plankton. Res, 23:389–413, 2001.

A. M. Edwards and J. Brindley. Oscillatory behaviour in a three-component plankton population model. Dynam. Stabil. Syst., 11:347–370, 1996.

A. M. Edwards and J. Brindley. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol., 61:303–339, 1999.

C. A. Edwards, H. P. Batchelder, and T. M. Powell. Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res., 22:1619–1648, 2000.

C. A. Edwards, T. A. Powell, and H. P. Batchelder. The stability of an NPZ model subject to realistic levels of vertical mixing. J. Mar. Res., 58:37–60, 2000.

C. S. Endres and K. J. Lohmann. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a mechanism for locating high-productivity oceanic regions for foraging. J. Exp. Biol., 215:3535–3538, 2012.

P. J. S. Franks. Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing. J. Plankton Res., 23:1433–1441, 2001.

P. J. S. Franks. NPZ models of plankton dynamics: Their construction, coupling to physics, and application. J. Oceanogr., 58:379–387, 2002.

N. G. Hairston, F. E. Smith, and L. B. Slobodkin. Community structure, population control, and competition. Am. Nat., 92:421–425, 1960.

C. Hamm and V. Smetacek. Armor: why, when, and how? In P. G. Falkowski and A. H. Knoll, editors, Evolution of Primary Producers in the Sea, pages 311–332. Academic Press, Amsterdam, 2007.

L. A. Hansson. Synergistic effects of food chain dynamics and induced behavioural responses in aquatic ecosystems. Ecology, 81:842–851, 2000.

E. L. Harvey and S. Menden-Deuer. Predator-induced fleeing behaviors in phytoplankton: a new mechanism for harmful algal bloom formation? PLoS ONE, 7, 2012.

C. S. Holling. The components of predation as revealed by a study of small mammal predation on the european pine sawfly. Can. Entomol., 91:293–320, 1959.

M. J. Kaiser, M. J. Attrill, S. Jennings, D. N. Thomas, D. K. A. Barnes, A. S. Brierley, J. G. Hiddink, H. Kaartokallio, N. V. C. Polunin, and D. G. Raffaelli. Marine Ecology: Processes, Systems, and Impacts. Oxford University Press, USA, second edition, 2011.

T. Kiørboe. A Mechanistic Approach to Plankton Ecology. Princeton University Press, NJ, 2008.

S. Kowalewsky, M. Dambach, B. Mauck, and G. Dehnhardt. High olfactory sensitivity for dimethyl sulphide in harbour seals. Biol. Lett., 2:106–109, 2006.

Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, second edition, 1998.

N. D. Lewis. Modelling the infochemical role of dimethylsulphide in pelagic multitrophic interactions. PhD thesis, University of Essex, 2014.

N. D. Lewis, M. N. Breckels, D. Archer, Steve, A. Morozov, J. W. Pitchford, M. Steinke, and E. A. Codling. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry, 110:303–313, 2012.

N. D. Lewis, N. Breckels, Mark, M. Steinke, and E. A. Codling. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex., 16:41–50, 2013.

N. D. Lewis, A. Morozov, M. N. Breckels, M. Steinke, and E. A. Codling. Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model. Math. Model. Nat. Phenom., 8:25–44, 2013.

G. Malin and G. O. Kirst. Algal production of dimethyl sulfide and its atmospheric role. J. Phycol., 33:889–896, 1997.

Maple 12. Maplesoft. A Division of Waterloo Maple Inc., 2008.

C. B. Miller. Biological Oceanography. Blackwell Publishing, Oxford, 2004.

A. Morozov, E. Arashkevich, A. Nikishina, and K. Solovyev. Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeniety. Math. Med. Biol., 28:185–215, 2011.

G. A. Nevitt, R. R. Veit, and P. Kareiva. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nature, 376:680–682, 1995.

V. Smetacek. A watery arms race. Nature, 411:745, 2001.

V. Smetacek. Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton. J. Biosci., 37:589–607, 2012.

K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving differential equations in R: Package deSolve. J. Stat. Softw., 33:1–25, 2010.

M. Steinke, G. Malin, and P. S. Liss. Trophic interactions in the sea: An ecological role for climate relevant volatiles. J. Phycol., 38:630–638, 2002.

M. Steinke, J. Stefels, and E. Stamhuis. Dimethyl sulfide triggers search behaviour in copepods. Limnol. Oceanogr., 51:1925–1930, 2006.

S. L. Strom and T. A. Morello. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J. Plankton. Res, 20:571–584, 1998.

J. T. Turner and P. A. Tester. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr., 42:1203–1214, 1997.

P. G. Verity and V. Smetacek. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser., 130:277–293, 1996.

M. Vos, B. W. Kooi, D. L. DeAngelis, and W. M. Mooji. Inducible defences and the paradox of enrichment. OIKOS, 105:471–480, 2004.

R. G. Williams and M. J. Follows. Ocean Dynamics and the Carbon Cycle. Cambridge University Press, USA, 2011.

G. V. Wolfe. The chemical defence ecology of marine unicellular plankton: constraints, mechanisms and impacts. Biol. Bull., 198:225–244, 2000.

G. V. Wolfe and M. Steinke. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr., 41:1151–1160, 1996.




DOI: http://dx.doi.org/10.5614%2Fcbms.2019.2.2.1

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This journal published by:

Indonesian Biomathematical Society

Address:

Center for Mathematical Modeling & Simulation

Institut Teknologi Bandung

Jalan Ganesa No. 10 Bandung 40132

Indonesia