On the Reproduction Ratio of Dengue Incidence in Semarang, Indonesia 2015-2018

Juni Wijayanti Puspita, Muhammad Fakhruddin, Hilda Fahlena, Fatkhur Rohim, Sutimin Sutimin


Dengue is one of the mosquito-borne diseases caused by dengue viruses (DENV), which has become endemic in most tropical and subtropical countries, including Indonesia. Since there is a lot of dengue incidence on children of age less than fourteen years old in Semarang, Indonesia, it is the interest here to analyze the different rates of infection among different age groups. A SIR-UV mathematical model with age structure in human the population is constructed to describe dengue transmission in Semarang from 2015 to 2018. In this study, we separated the human population into four age classes: children (0-4 years), youngster (5-14 years), productive adults (15-60 years) and non-productive adults (over 60 years). We use Particle Swarm  Optimization to obtain optimal parameters for the transmission rates based on the yearly incidence. The basic reproduction ratio (R0) is derived from the Next Generation Matrix and is evaluated by using the optimal parameters for data Semarang in 2015-2018. Numerical simulation results show that the number of dengue incidence is in a good agreement with the actual data in Semarang for 2015-2018.


age structure; dengue transmission model; estimation parameter; basic reproduction ratio

Full Text:



Sasmono, R. T., Taurel, A. F., Prayitno, A., Sitompul, H., Yohan, B., Hayati, R. F., & Nealon, J, 2018. Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia. PLoS neglected tropical diseases, 12(6), e0006616.

Gubler, D. J, 1998. Resurgent vector-borne diseases as a global health problem. Emerging infectious diseases, 4(3), 442.

Grist, N. R, 1993. Aedes albopictus: the tyre-travelling tiger. Journal of Infection, 27(1), 1-4.

Gubler, D. J, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in microbiology, 10(2), 100-103.

Haryanto, B, 2018. Indonesia dengue fever: status, vulnerability, and challenges. In Current Topics in Tropical Emerging Diseases and Travel Medicine. IntechOpen.

Karyanti, M. R., Uiterwaal, C. S., Kusriastuti, R., Hadinegoro, S. R., Rovers, M. M., Heesterbeek, H., & Bruijning-Verhagen, P, 2014. The changing incidence of dengue haemorrhagic fever in Indonesia: a 45-year registry-based analysis. BMC infectious diseases, 14(1), 412.

Pongsumpun, P., & Tang, I. M, 2003. Transmission of dengue hemorrhagic fever in an age structured population. Mathematical and Computer Modelling, 37(9-10), 949-961.

Sungchasit, R., Pongsumpun, P., & Tang, I. M., 2015. SIR transmission model of dengue virus taking into account two species of mosquitoes and an age structure in the human population. American journal of Applied sciences, 12(6), 426.

Tasman, H., Supriatna, A. K., Nuraini, N., & Soewono, E, 2012. A dengue vaccination model for immigrants in a two-age-class population. International Journal of Mathematics and Mathematical Sciences, 2012.

Kristiani, F., Samat, N. A., & bin Ab Ghani, S, 2017. The SIR-SI model with age-structured human population for dengue disease mapping in Bandung, Indonesia. Model Assisted Statistics and Applications, 12(2), 151-161.

Ganegoda, N. C., G¨otz, T., & Wijaya, K. P., 2019. An age-dependent model for dengue transmission: analysis and comparison to field data from Semarang, Indonesia. arXiv preprint arXiv:1908.09256.

Kermack, W. O., & McKendrick, A. G., 1927. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.

G¨otz, T., Altmeier, N., Bock, W., Rockenfeller, R., & Wijaya, K. P., 2017. Modeling dengue data from Semarang, Indonesia. Ecological complexity, 30, 57-62.

Fauzi, I. S., Fakhruddin, M., Nuraini, N., & Wijaya, K. P., 2019. Comparison of dengue transmission in lowland and highland area: case study in Semarang and Malang, Indonesia. Communication in Biomathematical Sciences, 2(1), 23-37.

Lizarralde-Bejarano, D. P., Arboleda-S´anchez, S., & Puerta-Yepes, M. E., 2017. Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia). Applied Mathematical Modelling, 43, 566-578.

de los Reyes, A. A., & Escaner IV, J. M. L., 2018. Dengue in the Philippines: model and analysis of parameters affecting transmission. Journal of Biological Dynamics, 12(1), 894-912.

Fakhruddin, M., Nuraini, N., & Indratno, S. W., 2019. Mathematical model of dengue transmission based on daily data in Bandung. In AIP Conference Proceedings (Vol. 2084, No. 1, p. 020013). AIP Publishing.

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G, 2009. The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873-885.



Semarang, B. K, 2015. Profil kependudukan kota Semarang tahun 2015. BPS Kota Semarang, Semarang.

Semarang, B. K, 2016. Profil kependudukan kota Semarang tahun 2016. BPS Kota Semarang, Semarang.

Semarang, B. K, 2017. Profil kependudukan kota Semarang tahun 2017. BPS Kota Semarang, Semarang.

Semarang, D. K. K, 2018. Profil kesehatan kota Semarang tahun 2018. Semarang: Dinas Kesehatan Kota Semarang.

Rao, S. S, 2009. Engineering optimization: theory and practice fourth edition. John Wiley & Sons.

Shi, Y., & Eberhart, R. C, 1998. Parameter selection in particle swarm optimization. In International conference on evolutionary programming (pp. 591-600). Springer, Berlin, Heidelberg.

DOI: http://dx.doi.org/10.5614%2Fcbms.2019.2.2.5


  • There are currently no refbacks.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This journal published by:

Indonesian Biomathematical Society


Center for Mathematical Modeling & Simulation

Institut Teknologi Bandung

Jalan Ganesa No. 10 Bandung 40132