### A Particle System Model for Dengue Transmission

#### Abstract

#### Full Text:

PDF#### References

N.T.J. Bailey, The Mathematical Theory of Infectious Diseases, Griffin, London, 1975

S. Bandini, S. Manzoni, G. Vizzari, Agent based modeling and simulation: An informatics perspective, Journal of Artificial Societies and Social Simulation V12, 4, 2009

W. Bock, T. Fattler, I. Rodiah, O. Tse, Numerical simulation of agent-based modeling of spatially inhomogeneous disease dynamics, AIP Conference Proceedings 1871, 020009 (2017); doi: 10.1063/1.4996519

O Diekmann, J.A.P Heesterbeek, Mathematical Epidemiology of Infectious Diseases, John Wiley & Son., New York, 2000.

L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosc. 150 (1998) 131-151.

N. Ferguson, R. Anderson, S. Gupta,The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. Natl. Acad. Sci. USA, Vol. 96, pp. 790794, January 1999, Population Biology

T. GÂ¨otz, T., N. Altmeier, W. Bock, Sutimin, K.P. Wijaya, Modeling dengue data from Semarang, Indonesia, Ecological Complexity,30, 2017, 57-62, DOI: 10.1016/j.ecocom.2016.12.010

C. Isidoro, N. Fachada, F. Barata, A. Rosa, (2011) Agent-Based Model of Dengue Disease Transmission by Aedes aegypti Populations. In: Kampis G., Karsai I., Szathmry E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science, vol 5777. Springer, Berlin, Heidelberg

C.-K. Li, H. Schneider, Applications of PerronFrobenius theory to population dynamics. J. Math. Biol., 2002, 44, 450462

A.L. Nevai, E. Soewono, A mathematical model for the spatial transmission of dengue with daily movement between villages and a city, Mathematical Medicine and Biology 31 (2) 2014, dqt002,150-178

N.Nuraini, E. Soewono, KA Sidarto, Mathematical Model Of Dengue Disease Transmission with Severe DHF Compartment, Bull.Malay. Math. Sci. Soc v. 30 No. 2, 2007,143-157

L. Perez, S. Dragicevic, An agent-based approach for modeling dynamics of contagious disease spread, International Journal of Health Geographics 2009, 8:50, doi:10.1186/1476-072X-8-50

S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreta, V. C. Morato E Silva, M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Phil. Trans. R. Soc. A (2010) 368, 56795693, doi:10.1098/rsta.2010.0278

M. Schmidtchen, On an Inhomogeneous Disease Spreading Model via Particle Systems, Bachelor Thesis, T.U. Kaiserslautern, 2014.

C. Strickland, G. Dangelmayr, P. D. Shipman, S. Kumar, T.J. Stohlgren, Network spread of invasive species and infectious diseases, Ecological Modelling 309310 (2015), 19

A.K. Supriatna, E. Soewono, S.A. van Gils, A two-age-classes dengue transmission model, Math. Biosciences 216, 2008, 114-121

P. Van Den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., vol. 180, pp. 2948, 2002.

WHO Fact Sheet Updated April 2017, Dengue and severe dengue, http://www.who.int/mediacentre/factsheets/fs117/en/

Y. Yang, P. Atkinson, D. Ettema, Individual spacetime activity-based modelling of infectious disease transmission within a city, J. R. Soc. Interface (2008) 5, 759772, doi:10.1098/rsif.2007.1218

H.M. Yang, D. Greenhalgh, Proof of conjecture in The basic reproduction number obtained from Jacobian and next generation matrices A case study of dengue transmission modelling, Applied Mathematics and Computation 265 (2015) 103107

L. I. Zambrano, M. Sierra, B. Lara, I. Rodrguez-N?nez, M. T. Medina, C. O. Lozada-Riascos, A.J.Rodrguez-Morales, Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS), J. Infect. Public Health, 2017, 10, 446-456.

DOI: http://dx.doi.org/10.5614%2Fcbms.2017.1.1.3

### Refbacks

- There are currently no refbacks.