A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

Ramli Ramli, Ambran Hartono, Edi Sanjaya, Ahmad Aminudin, Khairurrijal Khairurrijal, Freddy Haryanto, Cuk Imawan, Mitra Djamal


This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR) sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4) and nonmagnetic (CuO) layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.


CoFe2O4; CuO; ferrimagnetic; giant magnetoresistance sensor; magnetic sensor; spintronics.

Full Text:



Bibes, M. & Barthelemy, A., Oxides Spintronics, IEEE Trans. Electron. Devices, 54(5), 1003, 2007.

Fert, A., Nobel Lecture: Origin, Development, and Future of Spintronic, Rev. Mod. Phys., 80(4), pp. 1517-1530, 2008.

Grundberg, P.A., Spintronics: Towards Devices with Lower Energy Consumption, in Proc. 10th IEEE International Conference on Nanotechnology Joint Symposium, Yeom, G.Y., Ghosh, A., Wang, Z. (Eds), pp. 3-3, 2010.

Sun, D., Ehrenfreund, E. & Vardeny, Z.V., The First Decade of Organic Spintronic Research, Chem. Commun., 50, pp. 1781-1793, 2014.

Baibich, M.N., Broto, J.M., Fert, A., Nguyen van Dau, F., Petro, F., Eitenne, P., Creuzet, G., Friederich, A. & Chazelas, J., Giant Magnetoresistance of (001)Fe/Cr(001) Magnetic Superlattice, Phys. Rev. Lett., 61, pp. 2472-2475, 1988.

Binasch, G., Grunberg, P., Saurenbach, F. & Zinn, W., Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange, Phy. Rev. B, 39, pp. 4828-4830, 1989.

Daughton, J., Brown, J., Beech, R., Pohm, A. & Kude W., Magnetic Field Sensors using GMR Multilayer, IEEE Trans. Magn., 30(6), pp. 4608-4610, 1994.

Reig, C., Beltran, M.D.C. & Munoz, D.R., Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Application in Electrical Current Sensing, Sensors, 9, pp. 7919-7942, 2009.

Wood, R., Future Hard Disk Drive Systems, J. Magn. Magn. Mater., 321(100), pp. 555-561, 2009.

Tehrani,S., Chen, E., Durlam, M., Zhu, T. & Goronlun, H., High Density Nonvolatile Magnetoresistive RAM, in Proc. of International Electron Devices Meeting (IEDM’96), Hillenius, S., (Ed), pp. 193-196, 1996.

Shinjo, T. (Eds), Nanomagnetism and Spintronics, Elsevier, pp. 1-13, 2009.

Tezuka, N., New Materials Research for High Spin Polarized Current, J. Mag. Magn. Matter., 324, pp. 3588-3592, 2012.

Moussy, J.P., From Epitaxial Growth of Ferrite Thin Films to Spin-polarized Tunnelling, J. Phys. D: Appl. Phys., 46(14), 143001, 2013.

Culity, B.D. & Graham, C.D., Introduction to Magnetic Materials, John Wiley & Sons, Inc., pp. 183-189, 2009.

Lee, J., Park, J.Y., Oh, Y. & Kim, C.S., Magnetic Properties of CoFe2O4 Tin Films Prepared by A Sol-gel Method, J. Appl. Phys., 84(5), pp. 2801-2804, 1998.

Matsuda, H. & Sakakima, H., Magnetoresistance Curves of Spin Valves using the (110) Cobalt Ferrite Pinning Layer, J. Phys. D: Appl. Phys., 44(10), 105001, 2011.

Matzen. S., Moussy. J.P., Mattana, R., Bouzehouane. K., Deranlot. C. & Petroff. F., Nanomagnetism of Cobalt Ferrite-based Spin Filters Probed by Spin-Polarized Tunneling, Appl. Phys. Lett., 101(4), 042409, 2012.

Erdogan, Y.I. & Gulu, O., Optical and Structural Properties of CuO Nanofilms: Its Diode Application, Journal of Alloys and Compounds, 492(1), pp. 670-675, 2010.

Jundale, D.M., Joshi, P.B., Sen, S. & Patil, V.B., Nanocrystalline CuO Thin Films: Synthesis, Microstructural and Optoelectronics Properties, J. Matter. Sci.: Mater Electron, 23(8), pp. 1492-1499, 2012.

Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C. & Yang, S., CuO Nanostructures: Syntesis, Characterization, Growth Mechanism, Fundamental Properties, and Applications, Progress in Materials Science, 60, pp. 208-337, 2014.

Djamal, M., Ramli., Khairurrijal & Haryanto, F., Development of Giant Magntetoresistance Material Based on Cobalt Ferrite, Acta Physica Polonica A, 128(2-B), B19-B22, 2015.

Axelsson, A.K., Aquesse. F., Tileli. V., Valant, M. & Alford, N.M., Growth Mechanism and Magnetism of CoFe2O4 Thin Films; Role of the Substrate, J. Alloys and Compound, 578, pp. 286-291, 2013.

Yamagishi, Y., Honda, S., Inoue, J. & Itoh, H., Numerical Simulation of Giant Magnetoresistance in Magnetic Multilayers and Granular Films, Phys. Rev. B, 81, 054445, pp.1-5, 2010.

Bruno, P. & Chappert, C., Oscillatory Coupling between Ferromagnetic Layers Separated by a Nonmagnetic Metal Spacer, Physical Review Letters, 67(12), pp. 1602-1606, 1991.

Dieny, B., Humbert, P., Speriosu, V.S., Metin, S., Gurney, B.A., Baumgart, P. & Lefakis, H., Giant Magnetoresistance of Magnetically Soft Sandwiches: Dependence on Temperature and on Layer Thicknesses, Physical Review B, 45(2), pp. 806-813, 1992.

DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2016.48.3.4


  • There are currently no refbacks.

View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.


ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Jalan Ganesha 10, Bandung 40132, Indonesia, Phone: +62-22-86010080, Fax.: +62-22-86010051; E-mail: jmfs@lppm.itb.ac.id