Assessing Resistance and Bioremediation Ability of Enterobacter sp. Strain Saw-1 on Molybdenum in Various Heavy Metals and Pesticides

Mohd Khalizan Sabullah, Mohd Fadhil Rahman, Siti Aqlima Ahmad, Mohd Rosni Sulaiman, Mohd Shukri Shukor, Nor Aripin Shamaan, Mohd Yunus Shukor


One of the most economical approaches for removal of toxic compounds is bioremediation. In the long term, bioremediation is economic and feasible compared to other methods, such as physical or chemical methods. A bacterium that can efficiently reduce molybdenum blue was isolated from polluted soil. Biochemical analysis revealed the identity of the bacterium as Enterobacter sp. strain Saw-1. The growth parameters for optimal reduction of molybdenum to Mo-blue or molybdenum blue, a less toxic product, were determined around pH 6.0 to 6.5 and in the range of 30 to 37 ℃, respectively. Glucose was selected as preferred carbon source, followed by sucrose, maltose, l-rhamnose, cellobiose, melibiose, raffinose, d-mannose, lactose, glycerol, d-adonitol, d-mannitol, l-arabinose and mucate. Phosphate and molybdate were critically required at 5.0 mM and 10 mM, respectively. The scanning absorption spectrum acquired to detect the development of complex Mo-blue showed similarity to previously isolated Mo-reducing bacteria. In addition, the spectrum closely resembled the molybdenum blue from the phosphate determination method. Heavy metals, including mercury, copper (II) and silver (I), inhibited reduction. Moreover, the bacterium also showed capability of exploiting the pesticide coumaphos as an alternative carbon source for growth. As the bacterium proved its ability to detoxify organic and inorganic xenobiotics, the usefulness of this microorganism for bioremediation is highlighted.


bioremediation; coumaphos; Enterobacter sp. strain Saw-1; heavy metals; molybdenum

Full Text:



Mansee, A.H., Chen, W. & Mulchandani, A., Detoxification of the Organophosphate Nerve Agent Coumaphos using Organophosphorus Hydrolase Immobilized on Cellulose Materials, Journal of Industrial Microbiology and Biotechnology, 32(11-12), pp. 554-560, 2005.

Davis, GK., Molybdenum, In: Merian E, ed., Metals and their Compounds in the Environment, Occurrence, Analysis and Biological Relevance, pp. 1089-100, VCH Weinheim, New York, 1991.

Neunhäuserer, C., Berreck, M. & Insam, H., Remediation of Soils Contaminated with Molybdenum using Soil Sediments and Phytoremediation, Water, Air and Soil Pollution, 128(1-2), pp. 85-96, 2001.

Runnells, D.D., Kaback, D.S., & Thurman, E.M., Geochemistry and Sampling of Molybdenum in Sediments, Soils, and Plants in Colorado, In: Chappel, W.R. & Peterson, K.K., eds., Molybdenum in the Environment.. Marcel and Dekker, Inc., New York, 1976.

Yamaguchi, S., Miura, C., Ito, A., Agusa, T., Iwata, H., Tanabe, S., Tuyen, B.C. & Miura, T., Effects of Lead, Molybdenum, Rubidium, Arsenic and Organochlorines on Spermatogenesis in Fish: Monitoring at Mekong Delta Area and in-vitro Experiment, Aquatic Toxicology, 83(1), pp. 43-51, 2007.

Zhang, Y.L., Liu, F.J., Chen, X.L., Zhang, Z.Q., Shu, R.Z., Yu, X.L., Zhai, X.W., Jin L.J., Ma, X.G., Qi, Q. & Liu, Z.J., Dual Effects of Molybdenum on Mouse Oocyte Quality and Ovarian Oxidative Stress, Systems Biology in Reproductive Medicine, 59(6), pp. 312-318, 2013.

Ward G.M., Molybdenum Toxicity and Hypo Cuprosis in Ruminants A Review, Journal of Animal Sciences, 46(4), pp. 1078-85, 1978.

Lim, K.T. Shukor, M.Y., & Wasoh, H., Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds, BioMed Research International, 2014. DOI:10.1155/2014/503784

Chirwa, E.N. & Wang, Y.T., Simultaneous Chromium(VI) Reduction and Phenol Degradation in an Anaerobic Consortium of Bacteria, Water Research, 34(8), pp. 2376-2384, 2000.

Chung, J., Rittmann, B.E., Wright, W.F. & Bowman, R.H., Simultaneous Bio-Reduction of Nitrate, Perchlorate, Selenate, Chromate, Arsenate, and Dibromochloropropane Using A Hydrogen-Based Membrane Biofilm Reactor, Biodegradation, 18, pp. 199-209, 2007.

Halmi, M.I.E., Zuhainis, S.W., Yusof, M.T., Shaharuddin, N.A., Helmi, W., Shukor, Y., Syed M.A. & Ahmad, S.A., Hexavalent Molybdenum Reduction to Mo-blue by a Sodium-dodecyl-sulfate- Degrading Klebsiella Oxytoca Strain Dry14, BioMed Research International, 2013, ID 384541, 2013.

Yunus, S.M., Hamim, H.M., Anas, O.M., Aripin, S.N. & Arif, S.M., Mo (VI) Reduction to Molybdenum Blue by Serratia marcescens Strain Dr. Y9, Polish Journal of Microbiology, 58(2), pp. 141-147, 2009.

Ghani, B., Takai, M., Hisham, N.Z., Kishimoto, N., Ismail, A.K.M., Tano, T. & Sugio, T., Isolation and Characterization of a Mo6+-Reducing Bacterium, Appl. Environ. Microbiol., 59(4), pp. 1176-80, 1993.

Shukor, A., Yunus, M., Lee, C.H., Omar, I., Karim M.I.A., Syed M.A. & Shamaan, N.A., Isolation and Characterization of a Molybdenum-reducing Enzyme in Enterobacter cloacae strain 48, Pertanika Journal Science and Technology, 11(2), pp. 261-272, 2003.

Shukor, M.Y., Halmi, M.I.E., Rahman, M.F.A., Shamaan, N.A. & Syed, M.A., Molybdenum Reduction to Molybdenum Blue in Serratia sp. strain DRY5 is Catalyzed by a Novel Molybdenum-reducing Enzyme, BioMed Research International, 2014, ID 853084, 2014.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., & Williams, S.T., Bergey’s Manual of Determinative Bacteriology, 1994.

Costin, S., & Ionut, S., Bacterial Identification Software, Database Version: Bacillus 022012-2.10, ABIS Online, bacteria_logare.html, (15 March 2015).

Shukor, M.Y., Rahman, M.F., Shamaan, N.A. & Syed, M.S., Reduction of Molybdate to Molybdenum Blue by Enterobacter sp. strain Dr.Y13, Journal of Basic Microbiology, 49(SUPPL. 1), pp. S43-S54, 2009.

Shukor, M.S. & Shukor, M.Y., A Microplate Format for Characterizing the Growth of Molybdenum-reducing Bacteria, Journal of Environmental Microbiology and Toxicology, 2(2), pp. 42-44, 2014.

Iyamu, E.W., Asakura, T. & Woods, G.M., A Colorimetric Microplate Assay Method for High-Throughput Analysis of Arginase Activity in Vitro, Analytical Biochemistry, 383(2), pp. 332-334, 2008.

Losi, M.E. & Frankenberger, W.T., Reduction of Selenium Oxyanions by Enterobacter Cloacae Strain SLD1a-1: Reduction of Selenate to Selenite, Environmental Toxicology and Chemistry, 16(9), pp. 1851-1858, 1997.

Chaturvedi, V. & Kumar, A., Diversity of Culturable Sodium Dodecyl Sulfate (SDS) Degrading Bacteria Isolated from Detergent Contaminated Ponds Situated in Varanasi City, India, International Biodeterioration and Biodegradation, 65(7), pp. 961-971, 2011.

Campbell, A.M., Campillo-Campbell, A.D. & Villaret, D.B., Molybdate Reduction by Escherichia coli K-12 and Its Chl Mutants, Proc Natl Acad Sci, 82(1), pp. 227-231, 1985.

Kazansky L.P. & Fedotov M.A, Phosphorus-31 and Oxygen-17 N.M.R. Evidence of Trapped Electrons in Reduced 18-molybdodiphosphate(V), P2Mo18O62 8-, J. Chem. Soc., Chem. Commun., (14), pp. 644-6, 1980.

Shukor, Y., Adam, H., Ithnin, K., Yunus, I., Shamaan, N.A., & Syed, A., Molybdate Reduction to Molybdenum Blue in Microbe Proceeds via a Phosphomolybdate Intermediate, Journal of Biological Sciences, 7(8), pp. 1448-1452, 2007.

Suzuki, T., Miyata, N., Horitsu, H., Kawai, K., Takamizawa, K., Tai, Y. & Okazaki, M., NAD(P)H-dependent Chromium(VI) Reductase of Pseudomonas ambigua G-1: A Cr(V) Intermediate is Formed during the Reduction of Cr(VI) to Cr(III), Journal of Bacteriology, 174(16), pp. 5340-5345, 1992.

Myers. C.R., Carstens, B.P., Antholine, W.E. & Myers, J.M. Chromium(VI) Reductase Activity is Associated with the Cytoplasmic Membrane of Anaerobically Grown Shewanella Putrefaciens MR-1, Journal of Applied Microbiology, 88(1), pp. 98-106, 2000.

Shukor, M.Y., Habib, S.H.M., Rahman, M.F.A., Jirangon, H., Abdullah, M.P.A., Shamaan, N.A. & Syed, M.A., Hexavalent Molybdenum Reduction to Molybdenum Blue by S. Marcescens Strain Dr. Y6, Applied Biochemistry and Biotechnology, 149(1), pp. 33-43, 2008.

Shukor, M.Y., Syed, M.A., Lee, C.H., Karim, M.I.A., & Shamaan, N.A., A Method to Distinguish between Chemical and Enzymatic Reduction of Molybdenum in Enterobacter cloacae strain 48, Malaysian Journal of Biochemistry, 7, pp. 71-72, 2002.

Lim, H.K., Syed, M.A. & Shukor, M.Y., Reduction of Molybdate to Molybdenum Blue by Klebsiella sp. strain hkeem, Journal of Basic Microbiology, 52(3), pp. 296-305, 2012.

Abo-Shakeer, L.K.A., Ahmad, S.A., Shukor, M.Y., Shamaan, N.A., & Syed, M.A., Isolation and Characterization of a Molybdenum-reducing Bacillus pumilus strain lbna, Journal of Environmental Microbiology and Toxicology, 1(1), pp. 9-14, 2013.

Othman, A.R., Bakar, N.A., Halmi, M.I.E., Johari, W.L.W., Ahmad, S.A., Jirangon, H., Syed M.A. & Shukor, M.Y., Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. strain A.rzi, BioMed Research International, 2013, ID 371058, 2013. DOI:10.1155/2013/ 371058

Khan, A., Halmi, M.I.E. & Shukor, M.Y., Isolation of Mo-reducing Bacterium in Soils from Pakistan, Journal of Environmental Microbiology and Toxicology, 2(1), pp. 38-41, 2014.

Ahmad, S.A., Shukor, M.Y., Shamaan, N.A., Mac Cormack, W.P. & Syed, M.A., Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium, BioMed Research International, 2013, ID 871941, 2013. DOI:10.1155/2013/871941

Rahman, M.F.A., Shukor, M.Y., Suhaili, Z., Mustafa, S., Shamaan, N.A. & Syed, M.A., Reduction of Mo(VI) by The Bacterium Serratia sp. Strain DRY5, Journal of Environmental Biology, 30(1), pp. 65-72, 2009.

Shukor, M.Y., Ahmad, S.A., Nadzir, M.M.M., Abdullah, M.P., Shamaan, N. A., & Syed, M.A., Molybdate Reduction by Pseudomonas sp. strain DRY2, Journal of Applied Microbiology, 108(6), pp. 2050-2058, 2010.

Shukor, M.Y., Rahman, M.F., Suhaili, Z., Shamaan, N.A. & Syed, M.A., Hexavalent Molybdenum Reduction to Mo-blue by Acinetobacter Calcoaceticus, Folia Microbiologica, 55(2), pp. 137-143, 2010.

Shukor, M.Y., Rahman, M.F.A., Shamaan, N.A., Lee, C.H., Karim, M.I.A. & Syed M.A., An Improved Enzyme Assay for Molybdenum-reducing Activity in Bacteria, Applied Biochemistry and Biotechnology, 144(3), pp. 293-300, 2008.

Mansur, R., Gusmanizar, N., Roslan, M.A.H., Ahmad, S.A. & Shukor, M.Y., Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia, Tropical Life Sciences Research, 28(1), pp. 69-90, 2017.

Glenn, J.L. & Crane, F.L., Studies on Metalloflavoproteins. V. The Action of Silicomolybdate in the Reduction of Cytochrome c by Aldehyde oxidase, Biochimica Et Biophysica Acta, 22(1), pp. 111-115, 1956.

Shukor, M.Y., Rahman, M.F., Suhaili, Z., Shamaan, N.A., & Syed, M.A., Bacterial Reduction of Hexavalent Molybdenum to Molybdenum Blue, World Journal of Microbiology and Biotechnology, 25(7), pp. 1225-1234, 2009.

Sugiura, Y. & Hirayama, Y., Structural and Electronic Effects on Complex Formation of Copper(II) and Nickel(II) with Sulfhydryl-containing Peptides, Inorganic Chemistry, 15(3), pp. 679-682, 1976.

Sabullah, M.K., Ahmad, S.A., Shukor, M.Y., Gansau, A.J., Syed, M.A. Sulaiman, M.R. & Shamaan, N.A., Heavy Metal Biomarker: Fish Behaviror, Cellular Alteration, Enzymatic Reaction and Proteomic Approaches, International Food Research Journal, 22(2), pp. 435-454, 2015.

Arakawa, H., Neault J.F. & Tajmir-Riahi, H.A., Silver(I) Complexes with DNA and RNA Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis, Biophysical Journal, 81(3), pp. 1580-7, 2001.

Camakaris, J., Voskoboinik, I. & Mercer, J.F., Molecular Mechanisms of Copper Homeostasis, Biochemical Biophysical Research Communications, 261(2), pp. 225-232, 1999.

Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P. & Chandraraj, K., Reduction of Cr(VI) by a Bacillus sp., Biotechnology Letter, 28(4), pp. 247-252, 2006.

Rege, M.A., Petersen, JN, Johnstone, D.L., Turick, C.E., Yonge, D.R. & Apel, W.A., Bacterial Reduction of Hexavalent Chromium by Enterobacter cloacae strain H01 Grown on Sucrose, Biotechnology Letter, 19(7), pp. 691-694, 1997.

Hettiarachchi, G.M., Pierzynski, G.M. & Ransom, M.D., In-situ Stabilization of Soil Lead using Phosphorus and Manganese Oxide, Environmental Sciences and Technology, 34(21), pp. 4614-4619, 2000.

Deeb, B.E. & Altalhi, A.D., Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria, American Journal of Biochemistry and Biotechnology, 5(2), pp. 84-93, 2009.

Sethunathan, N. & Yoshida, T., A Flavobacterium sp. that Degrades Diazinon and Parathion, Canadian Journal of Microbiology. 19(7), pp. 873-875, 1973.

Mulbry, W., Characterization of a Novel Organophosphorus Hydrolase from Nocardiodes Simplex NRRL B-24074, Microbiology Research, 154(4), pp. 285-288, 2000.

Horne, I., Harcourt, R.L., Sutherland, T.D., Russell, R.J. & Oakeshott, J.G., Isolation of a Pseudomonas monteilli strain with a Novel Phosphotriesterase, FEMS Microbiology Letter, 206(1), pp. 51-55, 2002.

Ha, J., Engler, C.R. & Wild, J.R., Biodegradation of Coumaphos, Chlorferon and Diethylthiophosphate using Bacteria Immobilized in Ca-Alginate Gel Beads, Bioresource Technology, 100(3), pp. 1138-1142, 2009.



  • There are currently no refbacks.

View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.


Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM), Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Tel. +62-22-86010080, Fax.: +62-22-86010051; E-mail: