Pengontrolan Retak pada Beton dengan Optimalisasi Interaksi Komposit Beton pada Interface Zone

Resmi Bestari Muin, Sagir Alva, Agnes Hanna Patty, Fidi Fidi, Adelfy Dara Arianti

Abstract


Abstrak

Studi ini melakukan kajian yang signifikan terhadap kemungkinan terjadinya retak awal dan perambatannya yang rentan terjadi pada struktur-struktur di daerah marine. Retak beton yang terjadi merambat terutama di sepanjang interface zone yang secara signifikan dikondisikan oleh karakteristik agregat. Karakteristik agregat sebagai pengisi beton memiliki peran signifikan sebagai media pelepasan energi regangan dan dikenal sebagai energi fraktur. Hubungan energi fraktur dengan sifat material belum diidentifikasi secara jelas, dan sebagian besar studi menunjukkan ketidakpekaan relatif terhadap faktor air-semen, di mana retakan beton merambat terutama di sepanjang antarmuka agregat-semen. Penelitian ini merupakan penelitian eksperimental tentang karakteristik fraktur beton dengan variasi gradasi agregat kasar diameter maksimum 25 mm dan 20 mm, serta variasi faktor air-semen (w/c rasio) 0,30, 0,40 dan 0,6 dengan diameter maksimum agregat kasar 19 mm.   Eksperimen meliputi uji kuat tekan dan uji parameter fraktur yang terdiri dari energi fraktur dan faktor intensitas tegangan. Tes lentur tiga titik dipilih berdasarkan rekomendasi RILEM untuk menghitung parameter fraktur.Hasil penelitian menunjukkan bahwa gradasi agregat yang digunakan dalam campuran beton mempengaruhi energi fraktur beton. Energi puncak tertinggi didapat dengan menggunakan gradasi agregat menerus. Ukuran maksimum agregat mempunyai pengaruh yang signifikan terhadap energi fraktur. Semakin besar ukuran maksimum agregat dalam campuran beton, semakin tinggi energi puncak yang dicapai. Gradasi seragam dengan ukuran maksimum yang lebih kecil memiliki nilai kuat tekan yang tinggi namun energi fraktur yang rendah. Kuat tekan meningkat dengan menurunnya w/c rasio air-semen, sedangkan energi fraktur tidak memberikan pola yang sama dengan kuat tekan dengan perubahan w/c rasio. 

 

Abstract

This study conducts a significant study of the possibility of initial cracking and its propagation, which is susceptible to concrete structures. Concrete cracks that occur propagate mainly along the interface (interface zone) which is significantly influenced by the cement water factor and aggregate characteristics, as a concrete filler have a significant role as a strain energy release media known as fracture energy (GF). The relationship of fracture energy to material properties has not been clearly identified, besides that most studies show a relative insensitivity to the water-cement factor, where concrete cracks propagate mainly along the aggregate-cement interface. This study is an experimental study of the characteristics of concrete fractures with variations in coarse aggregate gradations, namely uniform coarse gradations with the maximum diameter of 25 mm (25 S) and 20 mm (20 S); continuous coarse aggregate with the maximum diameter of 25 mm (25 M), as well as variations in the water-cement factor (w / c ratio): 0.30 (HSC); 0.40 (MSC) and 0.6 (NSC) with a coarse aggregate maximum diameter of 19 mm. Experiments include compressive strength tests and concrete fracture property tests consisting of fracture energy




Keywords


BKT (beton kinerja tinggi), komposit beton, retak awal, interface zone.

Full Text:

PDF (Indonesian)

References


Bažant, Z. P., & Yu, Q. (2011). Size-effect testing of cohesive fracture parameters and nonuniqueness of work-of-fracture method. Journal of Engineering Mechanics, 137(8), 580–588.

Beshr, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials, 17(2), 97–103.

Chauhan, D. R., Tewani, H. R., & Kalyana Rama, J. S. (2018). Application of Principles of Linear Elastic Fracture Mechanics for Concrete Structures: A Numerical Study. In Applied Mechanics and Materials (Vol. 877, pp. 282–288).

Darwin, D., Barham, S., Kozul, R., & Luan, S. (2001). Fracture energy of high-strength concrete.

Dong, Z., & Keru, W. (2001). Fracture properties of high-strength concrete. Journal of Materials in Civil Engineering, 13(1), 86–88.

Kazemi, M. T., Golsorkhtabar, H., Beygi, M. H. A., & Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Construction and Building Materials, 142, 482–489.

Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A review on concrete fracture energy and effective parameters. Cement and Concrete Research, 120, 294–321.

Meddah, M. S., Zitouni, S., & Belâabes, S. (2010). Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials, 24(4), 505–512.

Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. New York (Third edit). London: McGraw-Hill. https://doi.org/10.1036/0071462899

Meng, W., Yao, Y., Mobasher, B., & Khayat, K. H. (2017). Effects of loading rate and notch-to-depth ratio of notched beams on flexural performance of ultra-high-performance concrete. Cement and Concrete Composites, 83, 349–359.

Mertol, H. C., Rizkalla, S., Zia, P., & Mirmiran, A. (2008). Characteristics of compressive stress distribution in high-strength concrete. ACI Structural Journal, 105(5), 626.

Patty, A. H. (2016). Peranan Diameter Maksimum Agregat Terhadap Kinerja Fraktur Beton Normal Pola Bukaan Tarik Tunggal. In Prosiding Seminar Nasional Teknik Sipil XII (pp. 419–426).

Patty, A. H., & Sugiarti, S. (2013). Energi Fraktur Beton Dengan Keruntuhan Kuasi-Regas Berdasarkan Model Retak Fiktif Fungsi Bi-Linier. Rekayasa Sipil, 7(2), 88–95.

Shah, S., & Ahmad, S. (2014). High performance concretes and applications. New York: CRC Press.

Shah, S. P., Swartz, S. E., & Ouyang, C. (1995). Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. New York: John Wiley & Sons.

Siregar, A P N, Rafiq, M. I., & Mulheron, M. (2017). Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Construction and Building Materials, 150, 252–259.

Siregar, Atur P N. (2012). Fracture Characteristic Of Normal And High Strength Concrete Using Different Aggregate Grading.

Tran, N. T., Tran, T. K., Jeon, J. K., Park, J. K., & Kim, D. J. (2016). Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates. Cement and Concrete Research, 79, 169–184.

Wang, G., Zhang, L., Zhang, J., Largeot, C., Portet, C., Chmiola, J., … Holze, R. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797–828. https://doi.org/10.1039/C1CS15060J

Yan, A., Wu, K.-R., Zhang, D., & Yao, W. (2001). Effect of fracture path on the fracture energy of high-strength concrete. Cement and Concrete Research, 31(11), 1601–1606.

Zhang, D., Ueda, T., & Furuuchi, H. (2012). Fracture mechanisms of polymer cement mortar: concrete interfaces. Journal of Engineering Mechanics, 139(2), 167–176.




DOI: http://dx.doi.org/10.5614%2Fjts.2020.27.1.7

Refbacks

  • There are currently no refbacks.


web
analytics

Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License