Hazard Deaggregation for Indonesia

L.L. Makrup, Masyhur Irsyam, I Wayan Sengara, Hendriyawan Hendriyawan


Abstract. Hazard deaggregation is required in seismic hazard analysis in order to determine the controlling magnitudes and distances for particular return periods of earthquakes. These magnitude and distance are required for physical interpretation of the results from probabilistic seismic hazard analysis and to take certain engineering decisions. This paper presents a development of hazard deaggregation for Indonesia. The deaggregation process is started by calculating the ground shaking with hazard level 10% probability of exceedance in 50 years. In this study, the deaggregation hazard map was analyzed using total probability method and by applying three dimensional (3-D) source models and recent seismotectonic parameters. Three source models were used in this analysis, namely: subduction zones, transform fault zones and background source zone. Indonesian earthquake source models were constructed and published attenuation relations to calculate the peak ground acceleration for rock site conditions were used in the analysis. The recurrence rates and sizes of historical earthquakes on known and inferred faults and across zones were determined from modified earthquake catalog. The results of this study are deaggregation hazard maps of Indonesia for 10% probability of exceedance in 50 years.

Abstract. Deagragasi hazard diperlukan dalam analisis seismic hazard untuk menentukan jarak dan magnitude kendali untuk perioda ulang gempa tertentu. Jarak dan magnitude ini digunakan untuk interpretasi fisik terhadap hasil dari analisis seismic hazard probabilistik dan untuk mengambil keputusan tentang hal yang bersifat keteknikan. Paper ini memberikan hal berupa pengembangan deagregasi hazard untuk Indonesia. Proses deagregasi dimulai dengan menghitung goncangan tanah dengan level hazard 10% probabilitas terlampaui dalam jangka waktu 50 tahun. Dalam studi ini, deagregasi hazard diananlisis menggunakan metoda probabilitas total dengan mengaplikasikan model sumber gempa tiga dimensi dan parameter seimotektonik terbaru. Tiga model sumber gempa digunakan dalam analisis ini yaitu sumber gempa zona subduksi, transform fault dan sumber background. Model sumber gempa Indonesia telah dikembangkan dan fungsi atenuasi yang terpublikasi digunakan untuk menghitung percepatan tanah puncak untuk kondisi site batuan. Ukuran dan laju keberulangan gempa-gempa histori pada fault yang sudah dikenal maupun fault yang keberadaanya masih dalam dugaan dan juga pada zona yang lain ditentukan dari katalog gempa yang telah dimodifikasi. Hasil dari studi ini adalah berupa peta deagregasi hazard untuk Indonesia dengan 10% probabilitas terlampaui dalam jangka waktu 50 tahun


Hazard analysis; Deaggregation analysis; Distance; Magnitude.

Full Text:



Atkinson, G.M. and Boore, D.M., 2003, Empirical Ground-Motion Relations for Subduction-Zone Earthquakes And Their Application to Cascadia and Other Regions, Bulletin of the Seismological Society of America, v. 93, p. 1703-1729.

Atkinson, G.M. and Boore, D.M., 2006, Ground Motion Prediction Equations for Earthquakes in Eastern North America, Bulletin of the Seismological Society of America, v. 96, p. 2181-2205.

Boore D.M. & Atkinson G.M. NGA Next Generation Attenuation, 2007, Ground Motion Relations for Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, PEER Report, Pacific Earthquake Engineering Research Center, California, USA: College of Engineering University of California, Berkeley, May.

Boore, D.M., Joiner, dan Fumal., 1997, Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, Seismological Research Letters, Volume 68 Januari/Pebruary, Seismological Society of America

Campbell, K.W., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra, Seismological Research Letters, Volume 68 Januari/Pebruary, Seismological Society of America.

Campbell, K.W., 2002, Prediction of Strong Ground Motion Using the Hybrid Empirical Method and its Use in The Development of Ground-Motion (Attenuation) Relations in Eastern North America, Bulletin of the Seismological Society of America, v. 93, p. 1012-1033.

Dewey J.W., 2006, Seismic Source Model for Thailand, Malaysia, Singapore and Western Indonesia, Unpublished.

Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., Hopper, M., 1996, National Seismic Hazard Map: Documentation June. Open-File Rep-U.S. Geol. Surv. 96-532.

Gardner, J.K., Knopoff, L., 1974, Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian?Bull. Seismol. Soc. Am. 64, 1363–1367.

Gutenberg, B. & Richter, C.F., 1944, Frequency of Earthquake in California, Bulletin of the Seismological Society of America, Vol.34, No. 4, pp. pp. 1985-1988.

Hendriyawan, Adnan A., Marto, A., Irsyam, M., 2005, The Development of Software for Seismic Hazard Study, Seminar Penyelidikan Kejuruteraan Awam (SEPKA), Universiti Teknologi Malaysia, 5-6 July.

Irsyam, M., Asrurifak, M., Hendriyawan, Budiono, B., Triyoso, W., Firmanti, A, 2009, The Development of Spectral Hazard Maps for Proposed Revision of Indonesia Seismic Building Code, Geomechanic and Geoengineering An international Journal Vol. X, No. X, Month 200X, 000-000

Kramer S.L., 1996, Geotechnical Earthquake Engineering. New Jersey: Prentice Hall. McCaffrey, R., 1991, Slip Vectors and Stretching of The Sumatran Fore Arc, Geology, v. 19, p. 881-884.

McGuire R. K. 2004, Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute MNO-10.

Newcomb, K.R., and McCann, W.R., 1987, Seismic History and Seismotectonics of the Sunda arc: Journal of Geophysical Research, v. 92, p. 421-439.

Nicolaou, A.S., 1998, A GIS Platform for Earthquake Risk Analysis. A Dissertation Submitted to the Faculty of the Graduate School of State University of New York at Buffalo USA in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy, August.

Petersen M.D., et.al., 2004, Probabilistic Seismic Hazard Analysis for Sumatra, Indonesia and Across the Southern Malaysian Peninsula. Elsevier.

Petersen M.D., et.al., 2008, Probabilistic Seismic Hazard for Sooutheast Assia. International Conference of Earthquake Engineering and Disaster Mitigation, Jakarta, April 14, 15.

Prawirodirdjo, L., Bock, Y., Genrich, J.F., Puntodewo SSO, Rais, J., Subarya, C., Sutisna, S.. 2000, One Century of Tectonic Deformation Along the Sumatran Fault From Triangulation and Global Positioning System surveys. Journal of Geophysical Research; 105:28343–28361.

Sadigh K., Chang C.Y., Egan J.A., Makdisi F., Young R.R., 1997, Attenuation Relationships for Shallow Crustal Earthquake Based on California Strong Motion Data, Seismological Research Letters, Volume 68 Januari/Pebruary, Seismological Society of America.

Sieh, K., Natawidjaja, D., 2000, Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res. 105, 28295–28326.

Silva, W., et al., 2005, US. Nuclear Regulatory Commission Report.

Somerville, P., Collins, N., Abrahamson, N., Graves, R. and Saikia, E., 2001, Ground Motion Attenuation Relations for the Central and Eastern United States, Final Report to U.S. Geological Survey.

Tavakoli, B., and Pezeshk, S., 2005, Empirical-Stochastic Ground-Motion Prediction for Eastern North America. Bulletin of the Seismological Society of America, v. 95, p. 2283-2296.

Toro, G., et al., 2005, U.S. Nuclear Regulatory Commission Report.

Wells, D.L., Coppersmith, K.J., 1994, New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 84, 974–1002.

Youngs, R.R. and Coppersmith, K.J., 1985, Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bulletin of the Seismological Society of

America, Vol. 75, No. 4, pp. 939-964

Youngs, R.R., Chiou, S.J, Silva W.J., 1997, Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes, Seismological Research Letters, Volume 68 Januari/Pebruary, Seismological Society of America.

Zachariasen, J., Sieh, K., Taylor, F.W., Edwards, R.L., Hantoro, W.S., 1999, Submergence and Uplift Associated with the Giant 1833 Sumatran Subduction Earthquake: Evidence from Coral Microatolls.

J. Geophys. Res. 104, 895– 919.

Zhao, J., Zhang. J., Asano, A., Onho, Y., Oouchi, T., Takahashi, T., Ogaa, H., Irikura, K., Thio, H.K, Somerville, P.G., et al., 1997, Attenuation Relations of Strong Motion in Japan Using the Classification Based on Predominant Period, Bulletin of the Seismological Society of America, v. 96, p. 898.

DOI: http://dx.doi.org/10.5614%2Fjts.2010.17.3.4


  • There are currently no refbacks.


Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License