Perilaku Histeretik Subassemblage Balok-Kolom Interior Prategang Parsial Reactive Powder Concrete dalam Pemodelan Finite Element

Siti Aisyah Nurjannah, Bambang Budiono, Iswandi Imran, Saptahari Sugiri

Abstract


Abstrak. Penelitian mengenai beton di beberapa negara telah menghasilkan suatu jenis beton Ultra High Performance Concrete (UHPC) yang memiliki kekuatan, daktilitas, modulus elastisitas, dan durabilitas tinggi, yang disebut Reactive Powder Concrete (RPC). Penelitian struktur yang menggunakan material RPC di berbagai negara telah memperlihatkan kinerja yang lebih baik daripada struktur yang terbuat dari Normal Concrete (NC) ataupun High Performance Concrete (HPC) dalam menahan beban baik monotonik maupun siklik. Hasil penelitian struktur bermaterial RPC yang menahan beban siklik memperlihatkan bahwa perilaku histeretik struktur cukup baik. Dalam penelitian ini, dilakukan penelitian material RPC dan pemodelan struktur dengan metode finite element non-linier (MFE-NL). Hasil pengujian material merupakan bagian dari input pemodelan struktur subassemblage balok-kolom interior prategang parsial (S-RPC) dengan MFE-NL Sebagai pembanding, terdapat model subassemblage balokkolom interior prategang parsial yang menggunakan material NC (S-NC). Untuk menganalisis perilaku histeretik model, terdapat beberapa model S-RPC dan S-NC dengan variasi nilai Partial Prestressed Ratio (PPR). Analisis hasil pemodelan memperlihatkan keunggulan kinerja dan perilaku histeretik semua model S-RPC dibandingkan dengan model S-NC dalam hal daktilitas, disipasi energi, kekakuan, dan kekuatan. Dari hasil pemodelan, terdapat nilai PPR optimum untuk model S-RPC yang berkisar antara 21,39% sampai dengan 37,34%. Sedangkan, nilai PPR optimum untuk model S-NC adalah 34,15%.

Abstract. Research on concrete in some countries has produced a concrete type of Ultra High Performance Concrete (UHPC) which has the strength, ductility, modulus of elasticity, and high durability, namely Reactive Powder Concrete (RPC). Research on structural engineering using RPC material in various countries have shown better performance than structures made of Normal Concrete (NC) or High Performance Concrete (HPC) in resisting both monotonic and cyclic loads. Research showed that structures using RPC that resisted cyclic loading had an appropriate hysteretic performance. In this study, research was conducted using RPC material and structure modeling with non-linear finite element method (NL-FEM). The material test results were used as parts of the input of the interior partial prestressed beam-column subassemblage structures (S-RPC) modelled using the NL-FEM. As a comparison, there were models of interior partial prestressed beam-column subassemblage used NC materials (S-NC). To analyze the hysteretic behavior of the models, there were variations of Partial Prestressed Ratio (PPR) values of S-RPC and S-NC models. Analysis of modeling results showed superior performance and better hysteretic behavior of all S-RPC models compared with the S-NC models in terms of ductility, energy dissipation, stiffness, and strength. From the modeling results, there were optimum PPR values of the S-RPC models which ranged between 21.39% and 37.34%. Meanwhile, the optimum PPR value of S-NC model was 34.15%.

Keywords


Reactive Powder Concrete; Partial Prestressed Ratio; Daktilitas; Disipasi energi.

Full Text:

PDF

References


ACI Committee, 2005, Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, ACI 374.1-05, USA: Farmington Hills.

American Society of Testing Materials (ASTM) International, 2006, ASTM A416/A416 M.

Standard Spesification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete, United States.

American Society of Testing Materials (ASTM) International, 2002, ASTM C78 – 02, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), United States.

American Society of Testing Materials (ASTM) International, 1994, ASTM C469 – 94, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, United States.

Applied Technology Council (ATC), 2005, Improvement of Nonlinear Static Seismic Analysis Procedures, Washington, DC.: FEMA 440 Report, Federal Emer-gency Management Agency, pp.392.

Badan Standardisasi Nasional, 1991, SNI 07-2529-1991 Metode Pengujian Kuat Tarik Baja Beton. Jakarta, Indonesia.

Badan Standardisasi Nasional, 2013, SNI 03–2847–2013 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, Jakarta, Indonesia.

Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J., dan Aitcin, P.C., 1997, Mechanical Properties and Durability of Two Industrial Reactive Powder Concrete, ACI Materials Journal, July-August

, p. 286-290.

Federal Emergency Management Agency, 2000, FEMA 356 Prestandard and Commentary for The Seismic Rehabilitation of Buildings, pp. 3-19 to 3-20.

Gilbert, R.I. and Mickleborough, N.C., 1990, Design of Prestressed Concrete, London: Unwin Hyman.

Graybeal, B.A., 2007, Compressive Behavior of Ultra-High-Performance Fibre-Reinforced Concrete, ACI Materials Journal, Vol. 104, No. 2 March-April 2007.

Gowripalan, N., Watters, R., Gilbert, R.I, and Cavill, B.. 2003, Reactive Powder Concrete for Precast Structural Concrete-Research and Development in Australia, 21st Biennial Conference of The Concrete Institut of Australia, Brisbane, Australia, p. 99-108.

Kurniawan, R., Budiono, B., Surono, A., dan Pane, I., 2011, Peningkatan Tahanan Punching Shear pada Struktur Flat Slab dengan Reactive Powder Concrete, Bandung: Prosiding Konferensi Nasional Pascasarjana Teknik Sipil (KNPTS), Institut Teknologi Bandung.

Malik, A.R., 2007, An Investigation into The Behaviour of Reactive Powder Concrete Columns, The University of New South Wales, Sydney, Australia: a dissertation in School of Civil and Environmental Engineering.

Menefy, L., 2007, Investigation of Reactive Powder Concrete and Its Damping Characteristics When Utilized in Beam Eelements. Griffith University, Gold Coast Campus, Australia: Thesis of Doctor Philosophy, Griffith School of Engineering.

Naibaho, P.R., Budiono, B., Surono, A., Pane, I., 2014, Studi Eksperimental Penambahan Tulangan pada Sambungan Balok-Kolom Eksterior Menggunakan Bubuk Reaktif dengan Beban Siklik, Prosiding Konferensi Nasional Pascasarjana Teknik Sipil, Institut Teknologi Bandung.

New Zealand Concrete Society (NZCS), 2010, New Zealand: PRESSS Design Handbook.

Paulay, T. and Priestly, M.J.N., 1992, Seismic Design of Reinforced Concrete and Masonry Buildings, John Willey & Sons.

Priestley, M. J. N., Sritaharan, S., Conley, J.R., dan Pampanin, S., 1999, Preliminary Result and Conclusions From the PRESS Five-Story Precast Concrete Test Building, Precast/Prestressed Concrete Institute Journal, November-December 1999, pp. 42-67.

Richard, P. dan Cheyrezy, M. 1994, Reactive Powder Concretes with High Ductility and 200–800 MPa Compressive Strength, Proc. of V. Mohan Malhotra Symposium Concrete Technology Past, Present, and Future, ACI SP-144, P.K.

Mehta, ed., American Concrete Institute, Farmington Hills, MI, March 1994, pp. 507–518.

Richard, P., dan Cheyrezy, M., 1995, Composition of Reactive Powder Concrete, Cement and Concrete Research, Vol. 25, No.7, pp. 1501 – 1511.

Thompson, K.J. dan Park, R., 1980, Ductility of Prestressed and Partially Prestressed Concrete Beam Sections, Precast/Prestressed Concrete Institute Journal, March-April 1980, pp. 46-70.




DOI: http://dx.doi.org/10.5614%2Fjts.2015.22.3.2

Refbacks

  • There are currently no refbacks.


web
analytics

Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License