Increase of In-Situ Measured Shear Wave Velocity in Sands with Displacement Pile and Stone Column Inclusions

Franciscus Xaverius Toha


Seismic downhole and MASW measurements were conducted at a potentially liquefiable site, where PC piles and stone column inclusion were provided to remediate the foundation soil. The selected site is part of a refinery located in high seismicity zone. The seismic measurements were done prior and after the PC piles and stone columns were installed. The densification, reinforcing, and dissipation contribution to the overall mitigation was elaborated herein. The measurement results are essentially consistent with the most recent theoretical developments and indicate that the strengthening due to mitigation is higher than predicted.

Pada situs yang berpotensi likuifaksi dengan sisipan tiang pancang PC dan tiang batu, dilakukan pengukuran seismik turun lubang dan MASW. Lokasi yang dipilih adalah bagian dari sebuah kilang minyak yang terletak dalam zona gempa tinggi. Pengukuran seismik dilakukan sebelum dan sesudah pemancangan tiang PC dan tiang batu. Uraian mendalam tentang sumbangan pemadatan, perkuatan dan disipasi terhadap keseluruhah mitigasi disampaikan di sini. Hasil pengukuran pada dasarnya konsisten dengan perkembangan teoritis terkini dan menunjukkan bahwa perkuatan akibat mitigasi masih di atas perkiraan.


Cyclic shear stress distribution, lateral pile capacity, seismic pore pressure, seismic shear wave velocity, stone columns

Full Text:



Adalier, K., and Elgamal, A., 2004, Mitigation o f liquefaction and associated ground deformations by stone columns, Engineering Geology, Vol. 72, No. 3-4, 275-291.

Baez, J.I., 1995, A design model for the reduction of soil liquefaction by using vibro-stone columns, Ph.D. thesis, Univ. of Southern California, Los Angeles, CA.

Baez, J.I., and Martin, G. R., 1993, Advances in the design of vibro-systems for improvement of liquefaction resistance, Proc. Symposium on Ground Improvement, Canadian Geotechnical Society, Vancouver.

Boulanger, R.W., Idriss, I.M., Stewart, D.P., Hashash, Y. and Schmidt, B., 1998, Drainage capacity of stone columns or gravel drains for mitigating liquefaction, GeotechnicalEarthquake Engineering and Soil Dynamics III, (edited by P. Dakoulas and M. Yegian), Geotechnical Special Publication No. 75, ASCE, Reston, U.S.A.

Chong, M.K., 2013, Soil movements due to displacement pile driving, Proc. 7th International Conference on Case Histories in Geotechnical Engineering, Paper No. 2.59,

Dise, K., Stevens, M.G., and Von Thun, J. L., 1994, Dynamic compaction to remediate liquefiable embankment foundation soils, Geotechnical Special Publication 45, ASCE, 1-25.

Dobson, T., 1987, Case Histories of the Vibro Systems to Minimize the Risk of Liquefaction, Soil Improvement – a Ten Year Update, Geotechnical Special Publication 12, ASCE.

Durgunoglu, H.T., 2006, Utilization of high modulus columns in foundation engineering under seismic loads, US 8th National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, San Francisco.

Goughnour, R.R., and Pestana, J. M., 1998, Mechanical behavior of stone columns under seismic loading, Proc., 2nd International Conference on Ground Improvement Techniques, CI-Primer, Singapore, 157-162.

Hardin, B.O., 1978, The nature of stress-strain behavior of soils, Proc., Earthquake Engineering and Soil Dynamics, ASCE, Pasadena, CA, Vol. 1, 3-89. Hausler, E.A., and Koelling, M., 2004, Performance of Improved Ground during the 2001 Nisqually Earthquake, 5th International Conference on Case Histories in Geotechnical Engineering, NY, USA, April 13-17, Paper No. 327.

Hayden, R.F., and Baez, J.I., 1994, State of Practice for Liquefaction Mitigation in North America, International Workshop on Remedial Treatment of Liquefiable Soils, Tsukuba Science City, Japan, July 4-6.

Jamiolkowski, M., Leroueil, S., and LoPresti, D.C.F., 1991, Theme Lecture: Design parameters from theory to practice, Proc. Geo-Coast ’91, Yokohama, Japan, 1-41.

Mahoney, D.P., and Kupec, J., 2014, Stone column ground improvement field trial: A Christchurch case study, Proc. New Zealand Society for Earthquake Engineering Conference, Paper No. O79, March.

Martin, J.R., and Olgun, C.G., 2007, Liquefaction mitigation using jet-grout columns – 1999 Kocaeli earthquake case history and numerical modelling, Proc. 4th International Conference on Earthquake Geotechnical Engineering, June 25-28, Thessaloniki-Greece, Paper No. 1273.

Massarsch. K.R., and Wersall, C., 2013, Cumulative soil displacement due to pile driving in soft clay, Geotechnical Special Publication (GSP 230) Honoring Robert D. Holtz, Edited by A. W. Stuedlein, and B. R. Christopher, ASCE, 463-480.

Matsuo, O., Shimazu, T., Goto, Y., Suzuki, Y., Okumura, R., and Kuwabara, M., 1996, Deep mixing method as a liquefaction prevention measure. Proc., 2nd International Symposium on Ground Improvement Geosystems, Tokyo, 521-526.

Mitchell, J.K., 2008, Mitigation of liquefaction potential of silty sands. Proc., From Research to Practice in Geotechnical Engineering Congress, ASCE, Reston, VA, 433–451.

Mitchell, J.K., and Huber, T.R., 1985, Performance of a Stone Column Foundation, Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 2, 205-223.

Mitchell, J.K., and Wentz, F.J., 1991, Performance of Improved Ground during the Loma Prieta Earthquake, University of California, Berkeley UCB/EERC Report 91/12.

O'Rourke, T.D., and Goh, S.H., 1997, Reduction of liquefaction hazards by deep soil mixing, Proc. the NCEER-INCEDE Workshop, March 10-11, Buffalo, New York.

Porbaha, A., Zen, K., and Kobayashy, M., 1999, Deep mixing technology for liquefaction mitigation. Journal of Infrastructure System, ASCE, Reston, VA, 21-34.

Priebe, H.J., 1991, Vibro replacement – design criteria and quality control, Deep Foundation Improvements: Design, Construction, and Testing, Esrig, Mi I., and Bachus, R. C., editors, ASTM STP 1089, Philadelphia, PA, 62-72.

Rayamajhi, D., Ashford, S.A., Boulanger, R.W., and Elgamal, A., 2016, Dense granular columns in liquefiable ground: I: Shear reinforcement and cyclic stress ratio reduction, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 142, Issue 7, Paper No. 04016023.

Rayamajhi, D., Nguyen, T.V., Ashford, S.A., Boulanger, R.W., Lu, J., Elgamal, A., and Shao, L., 2014, Numerical study of shear stress distribution for discrete columns in liquefiable soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 140, Issue 3, Paper No. 04013034.

Rayamajhi, D., Tamura, S., Khosravi, M., Boulanger, R.W., Wilson, D.W., Ashford, S.A., and Olgun, C. G., 2015, Dynamic centrifuge test to evaluate reinforcing mechanisms of soil-cement columns in liquefiable sand, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 141, Issue 6, Paper No. 04015015.

Rollins, K.M., Goughnour, R.R., Anderson, J.K.S., and Wade, S.F., 2004, Liquefaction hazard mitigation by prefabricated vertical drains, Proc. 5th International Conference on Case Histories in Geotechnical Engineering,

Seed, H.B., and Booker, J.R., 1977, Stabilization of potentially liquefiable sand deposits using gravel drains, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT7, 757-768.

Seed, R.B., and Harder, L.F., 1990, SPT based analysis of cyclic pore pressure generation and undrained residual strength, Proc. H. Bolton Seed Memorial Symposium, Univ. of California, Berkeley, Vol. 2, 351-376.

Sengara, I.W., 2012, Site Specific Seismic Study, Cilacap RFCC Project Report No. RFCC-C-CV-VP PO003-SP029, submitted by PT Adhi Karya (Persero) Tbk. to PT Pertamina (Persero), 38 pp.

SNI 03-1726-2002, Standar Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung.

Stuedlein, A.W., Abdollahi, A., Mason, H.B., and French, R., 2015, Shear wave velocity measurements of stone column improved ground and effect on site response, Proc. International Foundations Congress & Equipment Exposition, ASCE, San Antonio, TX, March 17-21, 2306-2317.

Toha, F.X., 2016, Seismic pore water pressure relief wells for gravel column-bed system, Journal of Engineering and Technological Sciences, ITB, submitted in November 2016.

Tsukamoto, Y., Ishihara, K., Yamamoto, M., Harada, K., and Yabe, H., 2000, Soil densification due to static sand pile installation for liquefaction remediation, Soils and Foundations, Vol. 40, No. 2, 9-20.

Wissmann, K.J., van Ballegooy, S., Metcalfe, B.C., Dismuke, J.N., Anderson, C.K., 2015, Rammed aggregate pier ground improvement as a liquefaction mitigation method in sandy and silty soils, Proc. 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand, 1-4 November.

Yegian, M.K., Eseller-Bayat, E., Alshawabkeh, A., and Ali, S., 2007, Induced-partial saturation for liquefaction mitigation: Experimental investigation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, Issue 4, April, 372-380.

Young, R., Gibson, M., and Newby, G., 2012, Seismic Performance of Ground Improvements on Christchurch Southern Motorway, Australian Geomechanics, Australian Geomechanics Society, 47(4), December.



  • There are currently no refbacks.


Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License