Assesment of morphometric and hydrological properties of smalls watersheds in East Java Regions

Mohamad Wawan Sujarwo, Indarto Indarto, Ega Wiratama, Bobby Teguh

Abstract


This paper presents the identification, assessment and visualization of physical, topographic, morphometric and hydrological properties of small watersheds in East Java Regions.  About 45 small watersheds were used for the analysis.  Physical propertis i.e: soil type layers, land use, etc were obtained by cropping the GIS layers with a watershed boundary. Then the ASTER G-DEM2 was used to derive morphometric properties of the watersheds. Furthermore, hydrological properties are derived statistically by analyzing available rainfall and discharge data. Parameters were selected to represent each watersheds properties. Finally, simple correlation analyses through the selected parameters were used to interpret the relation between physical, topographical, morphometric and hydrological properties of the watersheds. The resut show that some watersheds show the similtarity in certain parameters.


Keywords


similatiry; morphometric; hydrological; properties; watershed,

Full Text:

PDF

References


Castellarin, A. 2014. Regional prediction of flow-duration curves using a three-dimensional kriging, J-hydrol. Elsevier B.V., 513, hal. 179–191. doi: 10.1016/j.jhydrol.2014.03.050.

Chandniha, S. K., and Kansal, M.L. 2014. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India, Applied Water Science, hal. 1–10. doi: 10.1007/s13201-014-0.

Colwell, R.K., 1974. Predictability, Constancy, and Contingency of Periodic Phenomena. Ecology, 55: 1148-1153.

Fatichi, et al., 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J-hydrol. Elsevier B.V. 537: 45–60. doi: http://dx.doi.org/10.1016/j.hydrol.2016.03.026.

Gajbhiye, S., Mishra, S. K. and Pandey, A. 2014. Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective, Applied Water Science, 4(1), hal. 51–61. doi: 10.1007/s13201-013-0129-7.

Guth, P.L. 2011. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission,” Hydrology and Earth System Sciences, 15(7), hal. 2091–2099. doi: 10.5194/hess-15-2091-2011.

Gregor, M.,2012. User’s Manual HydroOffice 2012. , p.23.

Gordon, N.D., McMahon, T.A. and Finlayson, B.L. 1992. Stream Hydrology: an Introduction for Ecologists. John Wiley and Sons, 526 pp.

Harman, C. 2005. River Analysis Package: Help Manual, Cooperative Research Centre for Catchment Hydrology, University of Melbourne, Melbourne Australia.

Horton, R. E. 1933. The role of infiltration in the hydrologic cycle, Trans.Am.Geophys.Union., 14 : 446-6.

Horton, R.E. 1945. Geological Society of America Bulletin Erosional Development Of Streams and Their Drainage Basins ; Hydrophysical Approach to Quantitative Morphology.

Hermingler, K. R., Kumar, P. and Foulfoula-Georgiou, E. 1993. On the use of digital elevation model data for Hortonian and fractal analyses of channel networks, Wat. Resour. Res., 29, hal. 2599–2613.

Indarto et al. 2009.Pembuatan jaringan sungai dan karakteristik topografi DAS dari DEM-Jatim, Media Teknik Sipil, hal. PP-99.

Indarto, 2016. Hidrologi: Tool dan Analisis Untuk Hidrograf Aliran Sungai. Jember. Universitas Jember

Indarto et al., 2016. Studi Tentang Pemisahan Aliran Dasar pada DAS di Wilayah UPT PSDA Pasuruan, Jawa Timur. Jurnal Keteknikan Pertanian, 4(2), pp.227–236.

Khare D., Mondal A., Mishra P.K., Kundu S., and Meena P.K. 2014. Morphometric Analysis for Prioritization using Remote Sensing and GIS Techniques in a Hilly Catchment in the State of Uttarakhand, India. Indian Journal of Science and Technology, Vol 7(10), 1650–1662, October 2014.

Lindsay, J. B. 2005. The Terrain Analysis System: a tool for hydro-geomorphic applications, Hydrological Processes, 19(5), hal. 1123–1130. doi: 10.1002/hyp.5818.

Lindsay, J. B. 2016. The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 41(5), hal. 658–668. doi: 10.1002/esp.3888.

Lindsay JB. 2016. Whitebox GAT: A case study in geomorphometric analysis. Computers & Geosciences, 95: 75-84. DOI: 10.1016/j.cageo.2016.07.003.

Marsh N. 2004. Time Series Analysis Module: River Analysis Package, Cooperative Research Centre for Catchment Hydrology, Monash University, Melbourne Australia.

Marsh N., Harman C., Arene S.2005. Time Series Manager Module : River Analysis Package, Cooperative Research Centre for Catchment Hydrology, Monash University, Melbourne Australia.

Miller, V.C.1953. A quantitative geomorphic study of drainage basin characteristics in Clinch mountain area, Virginia and Tennesse, Project NR 389-042, Technical Report:3, Columbia University, Department of Geology, ONR, Geography branch, New York. Nag, S.K.

Meshram, S.G. & Sharma, S.K. 2015. Prioritization of watershed through morphometric parameters: a PCA-based approach. Applied Water Science, pp.1–15.

McMillan, H et al. 2016.Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, hal. 1–18. doi: 10.1080/02626667.2016.1159308.

Narsh N.2003. Time series analysis Module: River Analysis Package, Cooperative Research Centre for Catchment Hydrology, Monash University, Melbourne Australia.

Pallard, B., Castellarin, A. and Montanari, A. 2009. Sciences A look at the links between drainage density and flood statistics. hal. 1019–1029.

Pande, C. B. dan Moharir, K. 2015. GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River Basin, Maharashtra India. Applied Water Science, hal. 1–11. doi: 10.1007/s13201-015-0298-7.

Rai, P. K. et al. 2014. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India,” Applied Water Science. doi: 10.1007/s13201-014-0238-y.

Rio dan Indarto. 2014. Pembuatan Digital Elevation Model Resolusi 10m dari Peta RBI dan Survei GPS dengan algoritma ANUDEM. Jurnal Keteknikan Pertanian, 28, pp.55 – 64.

Singh, N. dan Singh, K.K. 2014. Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Applied Water Science, hal. 1–9. doi: 10.1007/s13201-014-0243-1.

Soni, S. 2016. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, hal. 1–14. doi: 10.1007/s13201-016-0395-2.

Strahler, A. N. 1964. Quantitative Geomorphology and Slopes in Bladlands at Perth Amboy. Geological Society of Amerika , 5 (3) 4-76.

Schumm, A. N. 1956. Evaluation of Drainage System and Slopes in Badladas. Geological Society of Amerika , Vol . 67 597-646. http://geomorphology. sese.asu.edu/Papers/Howard_ESPL_97.pdf [3 Desember 2015].

Tarboton, D. G., Bras, R. L. and Rodriuez-iturbe 1991. “On the extraction of cahnnel networks from digital elevation data.,” in Beven, K. J. dan (eds), I. D. M. (ed.) Terrain analysis and distributed modelling in hydrology. Chichester: Wiley, hal. 85–106.

Taylor, P. et al. 2009. A new method for modelling flow duration curves and predicting streamflow regimes under altered land-use conditions / Une nouvelle méthode de modélisation des courbes de débits classés et de prévision des régimes d â€TM écoulement sous conditions modifiées doi: 10.1623/hysj.54.3.606.

Toth, E. 2013. Catchment classification based on characterisation of streamflow and precipitation time series. Hydrology and Earth System Sciences, 17(3), hal. 1149–1159. doi: 10.5194/hess-17-1149-2013.

Umrikar, B. N. 2016. Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, hal. 1–13. doi: 10.1007/s13201-016-0390-7.

https://asterweb.jpl.nasa.gov/gdem.asp.

htttp://esa.int.org


Refbacks

  • There are currently no refbacks.


web
analytics

Lisensi Creative Commons

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License