Production of Bioethanol and Crude Cellulase Enyzme Extract from Napier Grass (Pennisetum purpureum S.) through Simultaneous Saccharification and Fermentation

Authors

  • Taufikurahman Taufikurahman School of Life Science and Technology, Bandung Institute of Technology
  • Sherly - Xie Departement of Biological Engineering, School of Life Science and Technology, Bandung Institute of Technology

DOI:

https://doi.org/10.5614/3bio.2020.2.2.3

Keywords:

Keywords, Bioethanol, Enzyme Activity, Neurospora sitophila, Napier grass, Simultaneous saccharification and fermentation

Abstract

Napier grass (Pennisetum purpureum S.) has been recognized for its high amounts of cellulose and hemicellulose which can be utilized for bioethanol production. Bioconversion of Napier grass to bioethanol can be performed by filamentous fungi. A fungi, Neurospora sitophila, can synthesize and secrete hydrolytic enzymes to breakdown the cellulose and hemicellulose into various monomeric sugars and simultaneously convert it to bioethanol. This study investigated the effect of Napier grass substrate concentrations and cultivation time on cellulase enzyme and bioethanol production by N. sitophila. The pretreatment of Napier grass was carried out using 1.5% (w/v) NaOH solution for 120 hours at 30 °C. After the pretreatment process, simultaneous saccharification and fermentation was conducted at 30 °C; pH 6.8-7.0 and agitation speed 130 Rpm with various of Napier grass substrate concentrations (10, 20 and 30 g l-1) and cultivation period within 24; 48; 72; 96 and 120 hours. The results show that the highest enzyme activity is 0.28 FPU/ml which was achieved at 120 hours of cultivation and 20 g/L substrate concentration of Napier grass. The highest ethanol content was obtained by 96 hours of simultaneous saccharification and fermentation (1.25 g l-1) using 20 g l-1 substrate concentration and the maximum ethanol yield is 0.30 g/g cellulose conducted at 30 g l-1 substrate concentration and 96 hours of fermentation.

Author Biography

Sherly - Xie, Departement of Biological Engineering, School of Life Science and Technology, Bandung Institute of Technology

Departement of Biological Engineering

References

Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S.. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy, 2017; 7(2): 28.

Yasuda, M., Ishii, Y., & Ohta, K.. Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation. Biotechnology and Bioprocess Engineering: BBE, 2014; 19(6): 943

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M.. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005; 96(6): 673-686.

Pandey, A.; Soccol, C. R.; Nigam, P.; Soccol, VT.; Vandenberghe, L. P. S.; Mohan, R. Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology, 2000; 74 (1): 81-87

Luo, P., & Liu, Z. Bioethanol production based on simultaneous saccharification and fermentation of wheat straw. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering 2010, March; (pp. 48-51). IEEE.

Dogaris, I., Mamma, D., & Kekos, D.. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?. Applied microbiology and biotechnology, 2013; 97(4), 1457-1473.

Medium V 4.0 Media Formulations 195-216

Selig, M.J., Todd B. Vinzant, T.B., Himmel, M.E. and Decker, S.R... The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes, Appl Biochem Biotechnol 2009.

Nielsen, J., Villadsen, J., & Keshavarz-Moore, E.. Bioreaction engineering principles. Trends inBiotechnology, 1995; 13(4): 156.

Chesson, A. & Datta, R.. Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components. J. Biotechnology and Bioengineering, Vol. XXIII, 1981; Pp. 2167

Miller, G.. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 1958.

Kruger, N. J.. The Bradford method for protein quantitation. The protein protocols handbook 2002; (pp. 15-21). Humana Press.

Mandels M, Andreotti R, Roche C Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 1976; 6: 21-33.

Ghose, T. K.. Measurement of cellulase activities. Pure and Applied Chemistry, 1987; 59(2): 257-268.

Rollin, J. A., Zhu, Z., Sathitsuksanoh, N., & Zhang, Y. H. P. . Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent" based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology and Bioengineering, 2011; 108(1): 22-30.

Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 2007; 42:1135-1139

Dewi, Arinta.. Pengaruh Temperatur terhadap Proses Biokonversi Lignoselulosa Daun Akar Wangi (Vetiveria zizanioides L. Nash) Menjadi Bioetanol Menggunakan Neurospora sp. 2016; Skripsi Sarjana, Rekayasa Hayati, Institut Teknologi Bandung.

Oguntimein, G., Vlach, D., & Moo-Young, M.. Production of cellulolytic enzymes by Neurospora sitophila grown on cellulosic materials. Bioresource Technology, 1992; 39(3): 277-283.

Li, Y., Peng, X., & Chen, H.. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. Journal of Bioscience and Bioengineering, 2013; 116(4): 493-498.

Augustine, A., Imelda, J., & Paulraj, R.. Biomass estimation of Aspergillus niger S, 4 a mangrove fungal isolate and A. oryzae NCIM 1212 in solid-state fermentation. Journal of the Marine Biological Association of India, 2006; 48(2): 139-146.

Dogaris, I., Vakontios, G., Kalogeris, E., Mamma, D., Kekos, D.. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial crops and products 2009; 29.

Cheng, S.W. and Anderson, B.C.. Investigation of ethanol production from municipal primary waste water. Bioresource Technology, 1997; 59: 81-96.

Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R.. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 2007; 40(6): 1451-1463.

Zhang, Y., Tang, B., & Du, G.. Production of cellulases by Rhizopus stolonifer from glucose-containing media based on the regulation of transcriptional regulator cre. Journal of Microbiology and Biotechnology, 2017; 27(3): 514-523.

Colvin, H. J., Sauer, B. L., & Munkres, K. D.. Glucose utilization and ethanolic fermentation by wild type and extrachromosomal mutants of Neurospora crassa. Journal of Bacteriology, 1973; 116(3): 1322-1328.

Lin H, Warmack RA, Han S , Kasuga T, Fan Z.. Alcohol consumption and tolerance of Neurospora crassa. Ferment Technol 2016; 5:136.

Xie, X., Wilkinson, H. H., Correa, A., Lewis, Z. A., Bell-Pedersen, D., & Ebbole, D. J.. Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal genetics and biology, 2004; 41(12): 1104-1119.

Eakin, R. T., & Mitchell, H. K.. Alterations of the respiratory system of Neurospora crassa by the mi-1 mutation. Journal of bacteriology, 1970; 104(1): 74-78.

Ingram, L. O., & Doran, J. B.. Conversion of cellulosic materials to ethanol. FEMS Microbiology Reviews, 1995; 16(2-3): 235-241.

Downloads

Published

2020-10-05

Issue

Section

Articles