High-Fat Diets-Induced Metabolic Disorders to Study Molecular Mechanism of Hyperlipidemia in Rats
DOI:
https://doi.org/10.5614/3bio.2021.3.2.5%20Keywords:
High-fat diet, hyperlipidemia, atherosclerosis, insulin resistanceAbstract
Hyperlipidemia is a lipid metabolism disorder occurring due to consumption of a high-fat diet (HFD), which contributes to atherosclerosis and cardiovascular disease development. HFD causes metabolic problems in Rodentia animals like human metabolic abnormalities, making it a popular model for studying the signaling systems involved. Hyperlipidemia is a condition in which the body's cholesterol levels elevate. In recent years, several studies have investigated the relationship between HFD feeding and hyperlipidemia and signaling pathways involved in cholesterol homeostasis. However, this signaling mechanism in lipid metabolism has not been fully explained, so additional analysis is needed. The present study aimed to investigate the mechanism that occurs from hyperlipidemia due to HFD feeding. The method used is a literature review approach following the PRISMA scheme for selecting the primary literature, including identification, screening, eligibility test, and inclusion. Eleven articles included primary literature with credibility (H-index) of 20, 33, 71, 92, 93, 162, 180, 192, and 332 (six articles from Q1 journals and five from Q2 journals). Long-term administration of HFD directly affects lipid metabolism, including an increase in the concentration of total cholesterol, triglycerides, LDL, and a decrease in HDL concentration, followed by an increase in body weight. In addition, HFD also disrupts adipose tissue and insulin resistance. The conclusion of this study is that HFD can cause hyperlipidemia either directly or indirectly by inducing insulin resistance, which contributes to lipid metabolism disorders.
References
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis [Internet]. 2017 Aug 1 [cited 2021 Jul 18];11(8):215. Available from: /pmc/articles/PMC5933580/. DOI: https://doi.org/10.1177/1753944717711379
Yuan Y, Liu Q, Zhao F, Cao J, Shen X, Li C. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation. Int J Mol Sci [Internet]. 2019 Oct 1 [cited 2021 Jun 27];20(19):4738. Available from: /pmc/articles/PMC6801986/. DOI: https://doi.org/10.3390/ijms20194738
Munshi RP, Joshi SG, Rane BN. Development of an experimental diet model in rats to study hyperlipidemia and insulin resistance, markers for coronary heart disease. Indian J Pharmacol [Internet]. 2014 [cited 2021 Jun 27];46(3):270?6. Available from: /pmc/articles/PMC4071702/. DOI: https://doi.org/10.4103/0253-7613.13215
Wang L, Fan W, Zhang M, Zhang Q, Li L, Wang J, et al. Antiobesity, Regulation of Lipid Metabolism, and Attenuation of Liver Oxidative Stress Effects of Hydroxy- ?-sanshool Isolated from Zanthoxylum bungeanum on High-Fat Diet-Induced Hyperlipidemic Rats. Oxid Med Cell Longev [Internet]. 2019 [cited 2021 Jul 22];2019. Available from: https://pubmed.ncbi.nlm.nih.gov/31534622/. DOI: https://doi.org/10.1155/2019/5852494
Buettner R, Schmerich J, Bollheimer LC. High-fat diets: Modeling the metabolic disorders of human obesity in rodents [Internet]. Vol. 15, Obesity. Obesity (Silver Spring); 2007 [cited 2021 Jun 27]. p. 798?808. Available from: https://pubmed.ncbi.nlm.nih.gov/17426312/. DOI: https://doi.org/10.1038/oby.2007.608
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020 271 [Internet]. 2020 Aug 2 [cited 2021 Oct 27];27(1):1?52. Available from: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-020-00673-8. DOI: https://doi.org/10.1186/s12929-020-00673-8
Bryda EC. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo Med [Internet]. 2013 [cited 2021 Oct 27];110(3):207. Available from: /pmc/articles/PMC3987984/
Iannaccone PM, Jacob HJ. Rats! Dis Model Mech [Internet]. 2009 May [cited 2021 Oct 27];2(5?6):206. Available from: /pmc/articles/PMC2675817/. DOI: https://doi.org/10.1242/dmm.002733
Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O?sullivan JF. Cardio-metabolic effects of high-fat diets and their underlying mechanisms?a narrative review [Internet]. Vol. 12, Nutrients. MDPI AG; 2020 [cited 2021 Jun 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/32455838/. DOI: https://doi.org/10.3390/nu1205150
Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J Clin Lipidol [Internet]. 2013 Jul 1 [cited 2021 Jul 18];7(4):304?83. Available from: http://www.lipidjournal.com/article/S1933287413001608/fulltext. DOI: https://doi.org/10.1016/j.jacl.2013.04.001
Xiao C, Dash S, Morgantini C, Hegele R, Lewis G. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol. Diabetes [Internet]. 2016 Jul 1 [cited 2021 Jul 13];65(7):1767?78. Available from: https://pubmed.ncbi.nlm.nih.gov/27329952/. DOI: https://doi.org/10.2337/db16-0046
Li T-T, Liu Y-Y, Wan X-Z, Huang Z-R, Liu B, Zhao C. Regulatory Efficacy of the Polyunsaturated Fatty Acids from Microalgae Spirulina platensis on Lipid Metabolism and Gut Microbiota in High-Fat Diet Rats. Int J Mol Sci Artic [Internet]. 2018 [cited 2021 Jul 22]; Available from: www.mdpi.com/journal/ijms. DOI: https://doi.org/10.3390/ijms19103075
Nour OA, Ghoniem HA, Nader MA, Suddek GM. Impact of protocatechuic acid on high fat diet-induced metabolic syndrome sequelae in rats. Eur J Pharmacol. 2021 Sep 15;907:174257. DOI: https://doi.org/10.1016/j.ejphar.2021.174257
Gohar A, Shakeel M, Atkinson RL, Haleem DJ. Potential mechanisms of improvement in body weight, metabolic profile, and liver metabolism by honey in rats on a high fat diet. PharmaNutrition. 2020 Dec 1;14:100227. DOI: https://doi.org/10.1016/J.PHANU.2020.100227
Moreno-Ferndez S, Garc-Rim M, Vera G, Astier J, Landrier JF, Miguel M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients [Internet]. 2018 Oct 14 [cited 2021 Jul 23];10(10). Available from: /pmc/articles/PMC6213024/. DOI: https://doi.org/10.3390/nu10101502
Ihsanario A, Ridwan A. Optimal Feeding Frequency on the Growth Performance of Whiteleg Shrimp (Litopenaeus vannamei) during Grow-out Phase. 3BIO J Biol Sci Technol Manag [Internet]. 2021 Jul 13 [cited 2021 Jul 26];3(1):42?55. Available from: http://journals.itb.ac.id/index.php/3bio/article/view/16120. https://doi.org/10.5614/3bio.2021.3.1.5
Mikolajewicz N, Komarova S V. Meta-Analytic Methodology for Basic Research: A Practical Guide. Front Physiol [Internet]. 2019 [cited 2021 Jul 18];10(MAR):203. Available from: /pmc/articles/PMC6445886/. DOI: https://doi.org/10.3389/fphys.2019.00203
Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev [Internet]. 2010 Dec [cited 2021 Jun 27];23(2):270?99. Available from: https://pubmed.ncbi.nlm.nih.gov/20977819/. DOI: https://doi.org/10.1017/S0954422410000168
Miah P, Mohona SBS, Rahman MM, Subhan N, Khan F, Hossain H, et al. Supplementation of cumin seed powder prevents oxidative stress, hyperlipidemia and non-alcoholic fatty liver in high fat diet fed rats. Biomed Pharmacother [Internet]. 2021 Sep 1 [cited 2021 Jul 16];141:111908. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332221006909. DOI: https://doi.org/10.1016/j.biopha.2021.11190
Yerlikaya FH, M. Aberrant expression of miRNA profiles in high-fat and high-sucrose fed rats. Vol. 27, Clinical Nutrition Experimental. Elsevier Ltd; 2019. p. 1?8. DOI: https://doi.org/10.1016/j.yclnex.2019.07.001
Wang L, Xu F, Zhang XJ, Jin RM, Li X. Effect of high-fat diet on cholesterol metabolism in rats and its association with Na+/K+-ATPase/Src/pERK signaling pathway. J Huazhong Univ Sci Technol - Med Sci. 2015;35(4):490?4. DOI: https://doi.org/10.1007/s11596-015-1458-6
Ness GC. Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG-CoA reductase and possible involvement of oxylanosterols. Vol. 1851, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. Elsevier; 2015. p. 667?73. DOI: https://doi.org/10.1016/j.bbalip.2015.02.008
Afonso MS, Marcondes Machado R, Ferrari Lavrador MS, Rocha Quintao EC, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis [Internet]. Vol. 10, Nutrients. MDPI AG; 2018 [cited 2021 Jun 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/29899250/. DOI: https://doi.org/10.3390/nu10060760
Han Q, Yeung SC, Ip MSM, Mak JCW. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018;17(1):1?10. DOI: https://doi.org/10.1186/s12944-018-0905-3
Fan Q, Yin X, Rababa?h A, Diaz AD, Wijaya CS, Singh S, et al. Integrative Cardiovascular Physiology and Pathophysiology: Absence of gravin-mediated signaling inhibits development of high-fat diet-induced hyperlipidemia and atherosclerosis. Am J Physiol - Hear Circ Physiol [Internet]. 2019 [cited 2021 Jul 10];317(4):H793. Available from: /pmc/articles/PMC6843010/. DOI: https://doi.org/10.1152/ajpheart.00215.2019
Kitamori K, Naito H, Tamada H, Kobayashi M, Miyazawa D, Yasui Y, et al. Development of novel rat model for high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis progression in SHRSP5/Dmcr. Environ Health Prev Med [Internet]. 2012 May [cited 2021 Jul 27];17(3):173?82. Available from: https://pubmed.ncbi.nlm.nih.gov/21853259/. DOI: https://doi.org/10.1007/s12199-011-0235-9
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance [Internet]. Vol. 98, Physiological Reviews. American Physiological Society; 2018 [cited 2021 Jun 27]. p. 2133?223. Available from: /pmc/articles/PMC6170977/. DOI: https://doi.org/10.1152/physrev.00063.2017
Du H, Li C, Wang Z, He Y, Wang Y, Zhou H, et al. Effects of Danhong injection on dyslipidemia and cholesterol metabolism in high-fat diets fed rats. J Ethnopharmacol. 2021 Jun 28;274:114058. DOI: https://doi.org/10.1016/j.jep.2021.114058
Zhang Q, Fan X, Ye R, Hu Y, Zheng T, Shi R, et al. The Effect of Simvastatin on Gut Microbiota and Lipid Metabolism in Hyperlipidemic Rats Induced by a High-Fat Diet. Front Pharmacol [Internet]. 2020 Apr 29 [cited 2021 Jul 10];11:522. Available from: www.frontiersin.org. DOI: https://doi.org/10.3389/fphar.2020.00522
Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, Abrishami M, Juya M, Khodaee G, et al. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med J Islam Repub Iran [Internet]. 2015 [cited 2021 Oct 27];29(1):240. Available from: /pmc/articles/PMC4715400/
Cai G, Shi G, Xue S, Lu W. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine (Baltimore) [Internet]. 2017 Sep 1 [cited 2021 Oct 27];96(37). Available from: /pmc/articles/PMC5604669/. DOI: https://doi.org/10.1097/MD.0000000000008058
Kammar-Garc A, Lez-Moreno P, Herndez-Herndez ME, Ort-Bueno AM, Martez-Monta M de LC. Atherogenic index of plasma as a marker of cardiovascular risk factors in Mexicans aged 18 to 22 years. Proc (Bayl Univ Med Cent) [Internet]. 2021 [cited 2021 Oct 27];34(1):22. Available from: /pmc/articles/PMC7785179/. DOI: https://doi.org/10.1080/08998280.2020.1799479
Himms-Hagen J. Role of thermogenesis in the regulation of energy balance in relation to obesity. Can J Physiol Pharmacol [Internet]. 1989 [cited 2021 Jul 27];67(4):394?401. Available from: https://pubmed.ncbi.nlm.nih.gov/2667732/. DOI: https://doi.org/10.1139/y89-063.
Abdel Maksoud HA, Elharrif MG, Mohammed RR, Omnia MA, El Sayed NE. Biochemical changes associated with low and very low calorie diets on lipid metabolism, iron profile and kidney function in obese rats. Clin Nutr Exp. 2020 Oct 1;33:32?8. DOI: https://doi.org/10.1016/j.yclnex.2020.07.004
Hori S, Abe T, Lee DG, Fukiya S, Yokota A, Aso N, et al. Association between 12?-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. J Nutr Biochem. 2020 Sep 1;83:108412. DOI: https://doi.org/10.1016/j.jnutbio.2020.108412
Zhang Y, Shanshan G, Yang Z, Li Z, Gong X, Zhang Q, et al. Disturbance of di-(2-ethylhexyl) phthalate in hepatic lipid metabolism in rats fed with high fat diet. Food Chem Toxicol. 2020 Dec 1;146:111848. DOI: https://doi.org/10.1016/j.fct.2020.111848
Ortiz M, Soto-Alarc SA, Orellana P, Espinosa A, Campos C, Lez-Arana S, et al. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig Liver Dis. 2020 Aug 1;52(8):895?904. DOI: https://doi.org/10.1016/j.dld.2020.04.019
Adermark L, Gutierrez S, Lagstr O, Hammarlund M, Licheri V, Johansson ME. Weight gain and neuroadaptations elicited by high fat diet depend on fatty acid composition. Psychoneuroendocrinology. 2021 Apr 1;126:105143. DOI: https://doi.org/10.1016/j.psyneuen.2021.105143
Wiktorowska-Owczarek A, Berezi?ska M, Nowak J. PUFAs: Structures, Metabolism and Functions. Adv Clin Exp Med [Internet]. 2015 [cited 2021 Jul 19];24(6):931?41. Available from: https://pubmed.ncbi.nlm.nih.gov/26771963/. DOI: https://doi.org/10.17219/acem/31243
Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, et al. Sterol Regulatory Element-binding Protein-1 (SREBP-1) Is Required to Regulate Glycogen Synthesis and Gluconeogenic Gene Expression in Mouse Liver. J Biol Chem [Internet]. 2014 Feb 28 [cited 2021 Jul 27];289(9):5510. Available from: /pmc/articles/PMC3937627/. DOI: https://doi.org/10.1074/jbc.M113.541110
Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, et al. Inflammatory links between high fat diets and diseases. Front Immunol [Internet]. 2018 Nov 13 [cited 2021 Jul 4];9(NOV):2649. Available from: www.frontiersin.org. DOI: https://doi.org/10.3389/fimmu.2018.02649
Rai P, Kumar M, Sharma G, Barak P, Das S, Kamat SS, et al. Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proc Natl Acad Sci U S A [Internet]. 2017 Dec 5 [cited 2021 Jun 30];114(49):12958?63. Available from: https://pubmed.ncbi.nlm.nih.gov/29158401/. DOI: https://doi.org/10.1073/pnas.1713292114
Li J, Huang J, Li JS, Chen H, Huang K, Zheng L. Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol. 2012 Apr 1;56(4):900?7. DOI: https://doi.org/10.1016/j.jhep.2011.10.018
Namgaladze D, Bre B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Vol. 1861, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. Elsevier B.V.; 2016. p. 1796?807. DOI: https://doi.org/10.1016/j.bbalip.2016.09.002
Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, et al. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-?B inhibitor (I?B)-nuclear factor-?B (NF?B) activation in rat muscle, in the. Diabetologia [Internet]. 2012 Mar [cited 2021 Jul 12];55(3):773?82. Available from: https://pubmed.ncbi.nlm.nih.gov/22159911/. DOI: https://doi.org/10.1007/s00125-011-2396-x
Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2. Inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70:117?28. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.02.014
Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NALP3/NLRP3 Inflammasome Instigates Obesity-Induced Autoinflammation and Insulin Resistance. Nat Med [Internet]. 2011 Feb [cited 2021 Jul 12];17(2):179. Available from: /pmc/articles/PMC3076025/. DOI: https://doi.org/10.1038/nm.2279
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature [Internet]. 2019 [cited 2021 Jun 27];576:51. DOI: https://doi.org/10.1038/s41586-019-1797-8
Abdulmalek SA, Fessal M, El-Sayed M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. J Ethnopharmacol. 2021 Feb 10;266:113439. DOI: https://doi.org/10.1016/j.jep.2020.113439
Song L, Schindler C. IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis [Internet]. 2004 Nov 1 [cited 2021 Jun 29];177(1):43?51. Available from: http://www.atherosclerosis-journal.com/article/S0021915004003788/fulltext. DOI: https://doi.org/10.1016/j.atherosclerosis.2004.06.018
Akieda-Asai S, Koda S, Sugiyama M, Hasegawa K, Furuya M, Miyazato M, et al. Metabolic features of rats resistant to a high-fat diet. Obes Res Clin Pract. 2013 Jul 1;7(4):e243?50. DOI: https://doi.org/10.1016/j.orcp.2013.01.004
Kim SM, Grenert JP, Patterson C, Correia MA. CHIP-/--Mouse Liver: Adiponectin- AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications. Sci Rep [Internet]. 2016 Jul 12 [cited 2021 Jun 30];6. Available from: https://pubmed.ncbi.nlm.nih.gov/27406999/. DOI: https://doi.org/10.1038/srep29423
Hu N, Yang L, Dong M, Ren J, Zhang Y. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy. Pharmacol Res. 2015 Oct 27;100:175?89. DOI: https://doi.org/10.1016/j.phrs.2015.08.005
Hua P, Yu Z, Xiong Y, Liu B, Zhao L. Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. Int J Mol Sci [Internet]. 2018 Dec 13 [cited 2021 Jul 22];19(12). Available from: /pmc/articles/PMC6320850/. DOI: https://doi.org/10.3390/ijms19124023
Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Vol. 417, Clinica Chimica Acta. Elsevier; 2013. p. 80?4. DOI: https://doi.org/10.1016/j.cca.2012.12.007
Wilcox G. Insulin and Insulin Resistance. Clin Biochem Rev [Internet]. 2005 [cited 2021 Jul 28];26(2):19. Available from: /pmc/articles/PMC1204764/
Haeusler RA, Mcgraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31?44. DOI: https://doi.org/10.1038/nrm.2017.89
Small L, Brandon AE, Turner N, Cooney GJ. Modeling insulin resistance in rodents by alterations in diet: What have high-fat and high-calorie diets revealed? [Internet]. Vol. 314, American Journal of Physiology - Endocrinology and Metabolism. American Physiological Society; 2018 [cited 2021 Jun 27]. p. E251?65. Available from: https://pubmed.ncbi.nlm.nih.gov/29118016/. DOI: https://doi.org/10.1152/ajpendo.00337.2017
Biddinger S, Hernandez-Ono A, Rask-Madsen C, Haas J, Alem J, Suzuki R, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab [Internet]. 2008 Feb 6 [cited 2021 Jul 14];7(2):125?34. Available from: https://pubmed.ncbi.nlm.nih.gov/18249172/. DOI: https://doi.org/10.1016/j.cmet.2007.11.013
Ji G, Zhao X, Leng L, Liu P, Jiang Z. Comparison of Dietary Control and Atorvastatin on High Fat Diet Induced Hepatic Steatosis and Hyperlipidemia in Rats. Lipids Health Dis [Internet]. 2011 [cited 2021 Jul 10];10(23):1?10. Available from: http://www.lipidworld.com/content/10/1/23. DOI: https://doi.org/10.1186/1476-511X-10-23
Ding S, Jiang J, Zhang G, Bu Y, Zhang G, Zhao X. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One [Internet]. 2017 Aug 1 [cited 2021 Jul 22];12(8). Available from: /pmc/articles/PMC5560739/. DOI: https://doi.org/10.1371/journal.pone.0183541
Dalos-Salas M, Mariadason JM, Watt MJ, Montgomery MK. Molecular regulators of lipid metabolism in the intestine ? Underestimated therapeutic targets for obesity? Biochem Pharmacol. 2020 Aug 1;178:114091. DOI: https://doi.org/10.1016/j.bcp.2020.114091
Downloads
Published
Issue
Section
License
Copyright (c) 2021 harfi maulana, Ahmad Ridwan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.