Wheatgrass microgreen with high antioxidants content in an urban indoor farming system
DOI:
https://doi.org/10.5614/3bio.2022.4.1.4Keywords:
blue light, carotenoids, chlorophyll, flavonoid, red lightAbstract
Urban lifestyle is identical to stressful life and sedentary habit, leading to the increase of chronic conditions such as diabetes and cardiovascular-related diseases. Antioxidants are renowned for maintaining cellular function by quenching radicals produced in stressful conditions or infection. Fresh fruits and vegetables are the primary sources of antioxidants, but the long postharvest and transport system may reduce the benefits for the urban population. Hence, we designed a cultivation method to produce wheatgrass microgreens with high antioxidants in an urban indoor farming system. Generally, plants require light at the wavelength of 663 and 642 nm (red) and 430 nm and 453 nm (blue) to allow photosynthesis and production of secondary metabolites, such as antioxidants. We applied the LED lights with an RGB ratio of 91R/9B, 83R/17B, 47R/53B, 35R/65B, and white florescent as the control. Our results showed that 91R/9B reduced fresh mass and chlorophyll content, which might be due to the suppression of photosynthesis capacity. Interestingly, we found a significant (p<0.05) increase in carotenoids and flavonoid contents due to light combinations of 35R/65B and 83R/17B, respectively. However, the total antioxidants capacity was similar among all treatments. Carotenoids and flavonoids are among the antioxidants with a significant role in decreasing the risks of chronic diseases and their potential as antiviral agents. This cultivation system of wheat microgreen could be a promising solution to routinely supply carotenoids and flavonoids to the urban population. Further, it is also considered more environmentally friendly as it could be performed in a limited amount of land (vertically) and potentially use less energy for distribution.
References
Carraro E, Schiliro T, Biorci F, Romanazzi V, Degan R, Buonocore D, Verri M, Dossena M, Bonetta, Gilli G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int J Environ Res Public Health [Internet]. 2018 Jun [cited 2021 Aug 15]; 15(6):1152. DOI: https://doi.org/10.3390/ijerph15061152
Herrera-Duenas A. Lights and shadows of city life: Consequences of urbanization for oxidative stress balance of the house sparrow. [Groningen]: University of Groningen, 2018. 170 p.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity [Internet]. 2017 Jun [cited 2021 Jul 29]; 8416763. DOI: https://doi.org/10.1155/2017/8416763
Mohan Y, Jesuthankaraj GN, Thangavelu NR. 2013. Antidiabetic and Antioxidant Properties of Triticum aestivum in Streptozotocin-Induced Diabetic Rats [Internet]. 2013 Dec [cited 2021 Jul 29]. DOI: https://doi.org/10.1155/2013/716073
Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK, Sharifi-Rad M, Kumar P, Sharifi-Rad J. Antioxidants: Positie or Negative Actors? Biomolecules [Internet]. 2018 Oct [cited 2021 Jul 26]; 8(4):124. DOI: https://doi.org/10.3390/biom8040124
Pohl F, Thoo Lin PK. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules [Internet]. 2018 Dec [cited 2021 Jul 26]; 23(12): 3283. DOI: https://doi.org/10.3390/molecules23123283
Mancini FR, Affret A, Dow C, Balkau B, Bonnet F, Boutron-Ruault MC, Fagherazzi G. Dietary antioxidant capacity and risk of type 2 diabetes in the large prospective E3N-EPIC cohort. Diabetologia [Internet]. 2017 Nov [cited 2021 Jul 26]; 61:308-316. DOI: https://doi.org/10.1007/s00125-017-4489-7
Muhammad Y, Kani YA, Iliya S, Muhammad JB, Binji A, Ahmad AE, Kabir MB, Bindawa KU, Ahmed A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria [Internet]. 2021 Feb [cited 2021 Jul 24];9. DOI: https://doi.org/10.1177/2050312121991246
Lammi C, Arnoldi A. Food-derived antioxidants and COVID-19. Journal of Food Biochemistry [Internet]. 2020 Nov [cited 2021 Jul 25]; 45(1):e13557. DOI: https://doi.org/10.1111/jfbc.13557
Meitha K, Pramesti Y, Suhandono S. Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. Int J Food Sci [Internet]. 2020 Dec [cited 2021 Jul 26]; 8817778. DOI: https://doi.org/10.1155/2020/8817778
Kyriaco M, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, Renna M, De Pascale S, Santamaria P. Micro-scale vegetable production and the rise of microgreens. Trends in Food Sci and Technology [Internet]. 2016 Nov [cited 16 Nov 2021]; 57:103-115. DOI: https://doi.org/10.1016/j.tifs.2016.09.005
Kumar S, Bharatbhai LJ, Saravaiya SN. Microgreens: A New Beginning towards Nutrition and Livelihood in Urban-Peri-Urban and Rural Continuum. In: Kumar S, Patel NB, Saravaiya SN, Patel BN, editors. Technologies and Sustainability of Protected Cultivation for Hi-Valued Vegetable Crops, [Internet]. India: Navsari Agricultural University; 2018 [cited 2021 Jun 20]. Chapter 19. Available from: https://www.researchgate.net/publication/326016018_Technologies_and_Sustainability_of_Protected_Cultivation_for_Hi-Valued_Vegetable_Crops ISBN: 978-81-922823-6-7
Avisar A, Cohen M, Katz R, Shentzer Kutiel T, Aharon A, Bar-Sela G. Wheatgrass Juice Administration and Immune Measures during Adjuvant Chemotherapy in Colon Cancer Patients: Preliminary Results. Pharmaceuticals. 2020 [cited 2021 November 22); 13(6):129. DOI: https://doi.org/10.3390/ph13060129
Sharma S, Shrivastav VK, Shrivastav A, Shrivastav BR. Therapeutic potential of wheatgrass (Triticum aestivum L.) for the treatment of chronic diseases. South Asian Journal of Experimental Biology. 2013 [cited 2021 November 22]; 3(6): 308-313. DOI: https://doi.org/10.38150/sajeb.3(6).p308-313
Amaral J, Murdono D. Vegetative and generative appearance of 10 wheat genotypes (Triticum aestivum L.) with GURI-3 as control in middle plains, Blotongan, Sidorejo, Salatiga, Central Java. Agritech [Internet]. 2018 Dec [cited 2021 Jun 22]; 20(2):31-37. DOI: https://doi.org/10.30595/agritech.v20i2.3986
Widowati S, Khumaida N, Ardie SW, Trikoesoemaningtyas. Morphological and quantitative characterizations of wheat (Triticum aestivum L.) in middle plains. Indonesian Journal of Agronomy [Internet]. 2016 Apr [cited 2021 Jun 22]; 44(2):162-169. DOI: https://doi.org/10.24831/jai.v44i2.13485
Huda M, Advinda L, Yuniarti E. Growth response of wheat (Triticum aestivum L.) to various hydroponic solution concentrations. Jurnal Biosains [Internet]. 2017 [cited 2021 Jun 23]; 1(2): 106-113. Available from: http://repository.unp.ac.id/21906/1/RESPON%20PERTUMBUHAN%20TANAMAN%20RUMPUT%20GANDUM%20%28Triticum%20aestivum%20L.%29.pdf ISSN: 2354-8371
Aisoi, LE. Analysis of chlorophyll content of daun jilat (Villebrune rubescens Bl.) at different development levels. Simbiosa [Internet]. 2019 Jul [cited 2021 Feb 15]; 8(1):50-58. DOI: https://doi.org/10.33373/sim-bio.v8i1.1893
Mottus M, Sulev M, Baret R, Lozano L, Reinart A. Photosynthetically active radiation: measurement and modelling. In: Meyers R, editor. Encyclopedia of Sustainability Science and Technology [Internet]. New York: Springer; 2011 [cited 2021 Jun 23]. pp 7902-7932. DOI: https://doi.org/10.1007/978-1-4419-0851-3
Kopsell D, Sams CE, Barickman TC. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. J. Amer. Soc. Hort. Sci. [Internet]. 2014 Jul [cited 2021 Jun 23]; 139(4):469-477. DOI: https://doi.org/10.21273/JASHS.139.4.469
Samuoliene G, Sirtautas R, Brazaityte A, Duchovskis P. LED lighting and seasonality affects antioxidant properties of baby lettuce. Food Chemistry [Internet]. 2012 Mar [cited 2021 Jun 24]; 134:1494-1499. DOI: https://doi.org/10.1016/j.foodchem.2012.03.061
Nam T, Kim DO, Eom SH. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Sci Biotechnol [Internet]. 2018 Feb [cited 2021 Jun 25]; 27(1):169-176. DOI: https://doi.org/10.1007/s10068-017-0204-1
Naznin M, Lefsrud M, Gravel V, Azad MOK. Blue Light added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants (Basel) [Internet]. 2019 Apr [cited 2021 Jun 25]; 8(4):93. DOI: https://doi.org/10.3390/plants8040093
Chinnadurai, S, Karthik G, Chermapandi P, Hemalatha A. Estimation of major pigment content in seaweeds collected from Pondicherry Coast. The Experiment: International Journal of Science and Technology [Internet]. 2013 Mar [ciited 2021 Feb 15]; 9(1):522-525. Available from: https://www.researchgate.net/publication/256543367_ESTIMATION_OF_MAJOR_PIGMENT_CONTENT_IN_SEAWEEDS_COLLECTED_FROM_PONDICHERRY_COAST ISSN: 2319-2119
Kamtekar S, Keer V, Patil V. Estimation of Phenolic content, Flavonoid content, Antioxidant and Alpha amylase Inhibitory Activity of Marketed Polyherbal Formulation. Journal of Applied Pharmaceutical Science [Internet]. 2014 Sep [cited 2020 Feb 15]; 4(9):61-65. DOI: https://doi.org/10.7324/JAPS.2014.40911
Saini A, Sinha S, Singh J. Comparison of polyphenols, flavonoids, antioxidant and free radical scavenging content of freeze dried wheatgrass extract from three different wheat species. International Journal of Applied Biology and Pharmaceutical Technology [Internet]. 2017 Jan [cited 2020 Feb 15]; 8(1):98-106. DOI: https://doi.org/10.21276/ijabpt
Son KH, Oh MM. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-emitting Diodes. American Society for Horticultural Science [Internet]. 2013 Aug [cited 2021 Aug 14]; 48(8):988-995. DOI: https://doi.org/10.21273/HORTSCI.48.8.988
Piovenne C, Orsini F, Bosi S, Sanoubar R, Bregola V, Dinelli G, Gianquinto G. Optimal red:blue ratio in eld lighting for nutraceutical indoor horticulture. Scientia Horticulturae [Internet]. 2015 Sep [cited 2021 Aug 14]; 193:202-208. DOI: https://doi.org/10.1016/j.scienta.2015.07.015
Samuoliene G, Urbonaviciute A, Brazaityte A, Sabajeviene G, Sakalauskaite J, Duchovskis P. The impact of LED illumination on antioxidant properties of sprouted seeds. Central European Journal of Biology [Internet]. 2011 Feb [cited 2021 Aug 14]; 6(1):88-74. DOI: https://doi.org/10.2478/s11535-010-0094-1
Liu J, Yan Y, Ali A, Yu MF, Xu QJ, Shi PJ, Chen L. Simulation of crop growth, time to maturity and yield by an improved sigmoidal model. Scientific Reports [Internet]. 2018 May [cited 2021 Jul 20]; 8:7030. DOI: https://doi.org/10.1038/s41598-018-24705-4
Prayitno, J. Growth Pattern and Biomass Harvesting in Microalgal Photobioreactor for Carbon Sequestration. Jurnal Teknologi Lingkungan [Internet]. 2016 Jan [cited 2021 Jul 20]; 17(1):45-52. DOI: https://doi.org/10.29122/jtl.v17il.1464
Nugraheni F, Haryanti S, Prihastanti E. Influence of Depth of Planting Difference and Water Volume Against Germination and Growth of Sorghum Seed (Sorghum bicolor (L.) Moench). Buletin Anatomi dan Fisiologi [Internet]. 2018 Aug [cited 2021 Jul 25], 3(2):223-232. Available from: https://ejournal2.undip.ac.id/index.php/baf/article/download/4629/2497 e-ISSN: 2541-0083
Lobiuc A, Vasilache V, Pintilie O, Stoleru T, Burducea M, Oroian M, Zamfirache MM. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules [Internet]. 2017 Nov [cited 2021 Jul 25]; 22(12):2111. DOI: https://doi.org/10.3390/molecules22122111
Zheng L, Van Labeke MC. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthesic Efficiency of Three Ornamental Pot Plants. Front Plant Sci [Internet]. 2017 May [cited 2021 Aug 14];8:917. DOI: https://doi.org/10.3389/fpls.2017.00917
Bohn T, Bonet M, Borel P, Keijer J, Landrier JF, Milisav I, Ribot J, Riso P, Winklhofer-Roob B, Sharoni Y, Corte-Real J, van Helden Y, Loizzo MR, Polj?ak B, Porrini M, Roob J, Treb?e P, Tundis R, Wawrzyniak A, Rl, Duli?ska-Litewka J. Mechanistic aspects of carotenoid health benefits ? where are we now? Nutrition Research Reviews [Internet]. 2021 May [cited 2021 Aug 16]. DOI: https://doi.org/10.1017/S0954422421000147
Yadav M, Sehrawat N, Singh M, Upadhyay SK, Anggarwal D, Sharma AK. Cardioprotective and Hepatoprotective Potential of Citrus Flavonoid Naringin: Current Status and Future Perspectives for Health Benefits. Asian Journal of Biological and Life Sciences [Internet]. 2020 Apr [cited 2021 Aug 16]; 9(1):1-5. DOI: https://doi.org/10.5530/ajbls.2020.9.1
Casarini TPA, Frank LA, Pohlmann AR, Guterres SS. Dermatological applications of the flavonoid phloretin. European Journal of Pharmacology [Internet]. 2020 Dec [cited 2021 Aug 16]; 889:173592. DOI: https://doi.org/10.1016/j.ejphar.2020.173593
Bondonno NP, Dalgaard F, Kyr Murray K, Bondonno CP, Lewis JR, Croft KD, Gislason G, Scalbert A, Cassidy A, Tjneland A, Overvad K, Hodgson JM. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nature Communications [Internet]. 2019 Aug [cited 2021 Aug 16]; 10:3651. DOI: https://doi.org/10.1038/s41467-019-11622-x
Muscogiuri G, Barrea L, Savastano S, Colao A. Nutritional recommendations for CoVID-19 quarantine. European Journal of Clinical Nutrition [Internet]. 2020 June [cited 2021 Aug 16]; 74:850-851. DOI: https://doi.org/10.1038/s41430-020-0635-2
Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res [Internet]. 2020 Aug [cited 2021 Aug 16]. DOI: https://doi.org/10.1002/ptr.6797
Yim SK, Kim I, Warren B, Kim J, Jung K, Ku B. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro. Int J Mol Sci [Internet]. 2021 Jun [cited 2012 Aug 16]; 22(12):6481. DOI: https://doi.org/10.3390/ijms22126481
Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE [Internet]. 2020 Oct [cited 2021 Aug 16]; 15(10):e0240653. DOI: https://doi.org/10.1371/journal.pone.0240653
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Myrea Chalil, Karlia Meitha, Ramadhani Eka Putra, Fathia Aulia Rahmah, Ridho R Sinatra, Anindha Ajeng Putri Winanta
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.