Preliminary Economic Potential Evaluation of Seaweed Gracilaria sp. Biomass Waste as Bioindustry Feedstock Through a Biorefinery Approach: A Case Study in Karawang, Indonesia

Authors

  • Muhammad Fadhlullah Independent Researcher https://orcid.org/0000-0003-1190-8105
  • Sukma Budi Prasetyati Fisheries Product Processing Department, Karawang Polytechnic of Marine and Fisheries, 41314 Karawang, Indonesia
  • Imam Pudoli CV Agro Niaga Utama, 41352, Karawang, Indonesia
  • Calvin Lo Bioprocess Engineering, Wageningen University and Research, 6700 AA Wageningen, the Netherlands

DOI:

https://doi.org/10.5614/3bio.2022.4.1.6

Keywords:

Cascading biorefinery, Gracilaria sp., Indonesia, Sustainability, Waste nutrient recovery

Abstract

Seaweed processing usually produces biomass waste from unused and rejected materials, which have economic potential due to their bioactive components. This preliminary study aims to evaluate the economic potential of seaweed biomass waste through a biorefinery approach. Seaweed Gracilaria sp. biomass waste samples were collected from a representative seaweed production unit in Karawang, Indonesia, and their biochemical composition was analyzed. Relevant information related to seaweed biomass waste was gathered. The preliminary economic evaluation was assessed from the gross revenue of the proposed products, based on the assumed annual seaweed biomass waste productivity, biochemical composition, and estimated market price of the products. The present study revealed that the dry weight of Gracilaria sp. biomass waste contains 63.2% carbohydrates, 13.6% proteins, 1.6% lipids, and 21.5% ashes. Heavy metals were detected in the biomass waste, although no pigments were detected. This study estimates that 52 metric tons/year of Gracilaria sp. biomass waste could generate amino acids, fatty acids, lipids, carbohydrates, and minerals with potential gross revenue of USD 222,924.6/year. This study suggests that Gracilaria sp. biomass waste could be potentially used as feedstock to improve its economic value for bioindustry purposes.

References

varez-Vis M, Flez-Ferndez N, Torres MD, Domguez H. Successful Approaches for a Red Seaweed Biorefinery. Marine Drugs. 2019 Oct;17(11):620. DOI: https://doi.org/10.3390/md17110620

Torres MD, Kraan S, Domguez H. Seaweed biorefinery. Reviews in Environmental Science and Biotechnology. 2019 Mar;18:335-388. DOI: https://doi.org/10.1007/s11157-019-09496-y

Rajak RC, Jacob S, Kim BS. A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Science of the Total Environment. 2020 May;716:137067. DOI: https://doi.org/10.1016/j.scitotenv.2020.137067

Saleh H, Sebastian E. Seaweed Nation: Indonesia?s New Growth Sector - South Sulawesi: Connectivity, People and Place. Caulfield East, Australia: Australia-Indonesia Centre; 2020. 18 p

Pratama MFA, Nurhayati A, Rizal A, Suryana AAH. Strategy for the Development of Seaweed Cultivation in Karawang Regency, West Java Province. Asian Journal of Fisheries and Aquatic Research. 2021 Mar;11(4):12-22. DOI: https://doi.org/10.9734/ajfar/2021/v11i430209

BPS-Statistics of Karawang Regency. Karawang Regency in Figures 2021. Karawang, Indonesia: BPS-Statistics of Karawang Regency; 2021. 333 p

Waluyo W, Permadi A, Fanni NA, Soedrijanto A. Quality Analisys of Seaweed Gracilaria verrucosa in Karawang District Ponds, West Java. Grouper. 2019 Apr;10(1):32-41. DOI: https://10.30736/grouper.v10i1.50

Supriatna U. Dry seaweed pressing steps in Koperasi Mina Agar Makmur [Personal interview, Jan]. Karawang, Indonesia; 2021 (Unpublished)

Filote C, Santos SCR, Popa VI, Botelho CMS, Volf I. Biorefinery of marine macroalgae into high-tech bioproducts: a review. Environmental Chemistry Letters. 2021 Apr;19:969-1000.DOI: https://doi.org/10.1007/s10311-020-01124-4

Kalasariya HS. A Beginners Guide for Seaweeds Identification. New Delhi, India: Educreation Publishing; 2019. 178 p

National Standardization Agency of Indonesia. SNI 2354.2:2015 Cara uji kimia - Bagian 2: Pengujian kadar air pada produk perikanan. Jakarta, Indonesia: National Standardization Agency of Indonesia; 2015. 4 p

National Standardization Agency of Indonesia. SNI 01-2354.4-2006 Cara uji kimia - Bagian 4: Penentuan kadar protein dengan metode total nitrogen pada produk perikanan. Jakarta, Indonesia: National Standardization Agency of Indonesia; 2006. 6 p

National Standardization Agency of Indonesia. SNI 2354-3:2017 Cara uji kimia - Bagian 3: Penentuan kadar lemak total pada produk perikanan. Jakarta, Indonesia: National Standardization Agency of Indonesia; 2017. 8 p

National Standardization Agency of Indonesia. SNI 2354-1:2010 Cara uji kimia - Bagian 1: Penentuan kadar abu dan abu tak larut dalam asam pada produk perikanan. Jakarta, Indonesia: National Standardization Agency of Indonesia; 2010. 5 p

Association of Official Analytical Chemists. Official method of analysis of AOAC International, 18th Edition. Gaithersburg, USA: AOAC International; 2005

PT. Saraswanti Indo Genetech. Gas Chromatography (GC) Protocol 18-6-1/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

PT. Saraswanti Indo Genetech. Ultra Performance Liquid Chromatography (UPLC) Protocol 18-5-17/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

PT. Saraswanti Indo Genetech. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP OES) Protocol 18-13-20/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

PT. Saraswanti Indo Genetech. High Performance Liquid Chromatography (HPLC) Protocol 18-5-19/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

PT. Saraswanti Indo Genetech. High Performance Liquid Chromatography (HPLC) Protocol 18-5-40/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

PT. Saraswanti Indo Genetech. Inductively Coupled Plasma-Mass Spectrometry (ICP MS) Protocol 18-13-14/MU/SMM-SIG. Bogor, Indonesia: PT. Saraswanti Indo Genetech; 2021

Francavilla M, Franchi M, Monteleone M, Caroppo C. The Red Seaweed Gracilaria gracilis as a Multi Products Source. Marine Drugs. 2013 Sep;11(10):3754-3776. DOI: https://doi.org/10.3390/md11103754

Chan PT, Matanjun P. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chemistry. 2017 Apr;221:302-310. DOI: https://doi.org/10.1016/j.foodchem.2016.10.066

Offei F, Mensah M, Thygesen A, Kemausuor F. Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation. 2018 Nov;4(4):99. DOI: https://doi.org/10.3390/fermentation4040099

Rosemary T, Arulkumar A, Paramasivam S, Mondragon-Portocarrero A, Miranda JM. Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria edulis and Gracilaria corticata. Molecules. 2019 Jun;24(12):2225. DOI: https://doi.org/10.3390/molecules24122225

Sadhukhan J, Gadkari S, Martinez-Hernandez E, Ng KS, Shemfe M, Torres-Garcia E, Lynch J. Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chemistry. 2019 Apr;21(10):2635-2655. DOI: https://doi.org/10.1039/c9gc00607a

Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technology. 2013 May;135:150-156. DOI: https://doi.org/10.1016/j.biortech.2012.10.120

Shukla R, Kumar M, Chakraborty S, Gupta R, Kumar S, Sahoo D, Kuhad RC. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresource Technology, 2016 Nov;220:584-589. DOI: https://doi.org/10.1016/j.biortech.2016.08.096

Baghel RS, Suthar P, Gajaria TK, Bhattacharya S, Anil A, Reddy CRK. Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. Journal of Cleaner Production. 2020 Aug;263:121359. DOI: https://doi.org/10.1016/j.jclepro.2020.121359

Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, Lez-Contreras AM. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology. 2016 Apr;28:3511-3525. DOI: https://doi.org/10.1007/s10811-016-0842-3

Kaliaperumal N. Products from seaweeds. SDMRI Research Publication. 2003;3:33-42

Cian RE, Martez-Augustin O, Drago, SR. Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Research International. 2012 Nov;49(1):364-372. DOI: https://doi.org/10.1016/j.foodres.2012.07.003

Cian RE, Alaiz M, Vioque J, Drago SR. Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. Journal of Applied Phycology. 2013 Aug;25:1197-1206. DOI: https://doi.org/10.1007/s10811-012-9913-2

Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B. Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry. 2015 Jan;17(4):2436-2443. DOI: https://doi.org/10.1039/C4GC02532F

Norziah MH, Ching CY. Nutritional composition of edible seaweed Gracilaria changgi. Food Chemistry. 2000 Jan;68(1):69-76. DOI: https://doi.org/10.1016/S0308-8146(99)00161-2

Uribe E, Vega-Gvez A, Vargas N, Pasten A, Rodruez K, Ah-Hen KS. Phytochemical components and amino acid profile of brown seaweed Durvillaea antarctica as affected by air drying temperature. Journal of Food Sciences and Technology. 2018 Oct;55:4792?4801. DOI: https://doi.org/10.1007/s13197-018-3412-7

Wong KH, Cheung PCK. Nutritional evaluation of some subtropical red and green seaweeds: Part I - proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry. 2000 Dec;71(4):475-482. DOI: https://doi.org/10.1016/S0308-8146(00)00175-8

Jung KA, Lim SR, Kim Y, Park JM. Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology. 2013 May;135:182-190. DOI: https://doi.org/10.1016/j.biortech.2012.10.025

Billakanti JM, Catchpole OJ, Fenton TA, Mitchell KA, MacKenzie AD. Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process biochemistry. 2013 Dec;48(12):1999-2008. DOI: https://doi.org/10.1016/j.procbio.2013.09.015

Rudke AR, de Andrade CJ, Ferreira SRS. Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends in Food Science and Technology. 2020 Sep;103:214-224. DOI: https://doi.org/10.1016/j.tifs.2020.07.018

Balina K, Romagnoli F, Blumberga D. Chemical Composition and Potential Use of Fucus Vesiculosus from Gulf of Riga. Energy Procedia. 2016 Sep;95:43-49. DOI: https://doi.org/10.1016/j.egypro.2016.09.010

National Standardization Agency of Indonesia. SNI 2690:2015 Rumput laut kering. Jakarta, Indonesia: National Standardization Agency of Indonesia; 2015. 8 p

Febrianto W, Djunaedi A, Suryono S, Santosa GW, Sunaryo S. Potensi Antioksidan Rumput Laut Gracilaria verrucosa Dari Pantai Gunung Kidul, Yogyakarta. Jurnal Kelautan Tropis. 2019 Apr;22(1):81-86. DOI: https://doi.org/10.14710/jkt.v22i1.4669

Alibaba. Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [Internet]. 1999 [Accessed: 2021 Oct 7]. Available from: https://alibaba.com

Khoo CG, Dasan YK, Lam MK, Lee KT. Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource Technology. 2019 Nov;292:121964. DOI: https://doi.org/10.1016/j.biortech.2019.121964

Balina K, Romagnoli F, Blumberga D. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia. 2017 Sept;128:504-511. DOI: https://doi.org/10.1016/j.egypro.2017.09.067

Chen Q, Liu D, Wu C, Yao K, Li Z, Shi N, Wen F, Gates ID. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: an activity-tunable biocatalyst for extraction of lipids from microalgae. Bioresource technology. 2018 Sep;263:317-324. DOI: https://doi.org/10.1016/j.biortech.2018.04.071

Lo C, Semerel J, van den Berg C, Wijffels RH, Eppink MHM. Eutectic solvents with tuneable hydrophobicity: lipid dissolution and recovery. RSC Advances. 2021 Feb;11(14):8142-8149. DOI: https://doi.org/10.1039/d1ra00306b

Kostas ET, Adams JMM, Ruiz HA, Dur-Jimez G, Lye GJ. Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives. Renewable and Sustainable Energy Reviews. 2021 Nov;151:111553. DOI: https://doi.org/10.1016/j.rser.2021.111553

Downloads

Published

2022-04-20

Issue

Section

Articles