The Structural Evaluations of SARS-CoV-2 Main Protease (Mpro): A Review for COVID-19 Antivirals Development Strategy
DOI:
https://doi.org/10.5614/3bio.2023.5.2.2Keywords:
antivirus, target sites, mutational cold spot, main protease, SARS-CoV-2Abstract
It has been almost four years since the first case of COVID-19 emerged, and the antivirals that could work specifically against SARS-CoV-2with a high efficacy are still under development. Main Protease (Mpro) of this virus plays a crucial role in virion maturation during itsreplication within the host cell. This protein works together with the papain-like protease (PLpro) to cleave polyprotein 1a and 1ab into a total of16 functional fragments of non-structural protein. Antiviral with the ability to inhibit the activity of Mpro could potentially prevent the virion replication, and they can be developed to target the catalytic or allosteric site of this protein. Antiviral that works on the catalytic site will act as competitive inhibitors of the substrate peptide which leads to the loss of Mpro function. Targeting the allosteric site (e.g. distal site and dimerization interface) will cause allosteric modu- lation of the protomer which could alter the protein 3D conformation and disrupt the formation of homodimer structure. This will affect the geometry and surface structure of the catalytic site which in turn decreases the affinity of the substrate peptide towards the Mpro catalytic site, resulting in a completeinactivation of the protein. Mutation study of Mpro amino acids sequence also reveals that the mutation frequency for each amino acid position isextremely low and negligible. Moreover, it is found that this protein has 24 mutational cold spot residues scattered within its structure which could be targeted for the development of antivirals due to its highly conserved nature.
References
] Damme, W., Dahake, R., Delamou, A., et al. (2020). The COVID-19 pandemic: diverse context; different epidemics ? how and why. BMJ Journal for Global Health Analysis, 5: 1-16. DOI: https://doi.org/10.1136/bmjgh-2020-003098
] Balkhair, A. A. (2020). COVID-19 pandemic: a new chapter in the history of infectious disease. Oman Medical Journal, 35(2): 44-45. DOI: https://doi.org/10.5001/ omj.2020.41
] Helmy, Y. A., Fawzy, M., Elaswad, A., et al. (2020). The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. MDPI Journal of Clinical Medicine, 9(1225):
-29. DOI: https://doi.org/10.3390/jcm9041225
] Worldometer. (2021). COVID-19 Coronavirus Pandemic, Last Updated September 23, 2022, 08.31 GMT [online] accessed from https://www.worldometers.info/ coronavirus/ on September 23, 2023 at 23.30 CET
] Ritchie, H., Ospina, E. O., Beltekian, D.; et al. (2021). Coronavirus (COVID-19) cases. Our World in Data [online] accessed from https://ourworldindata.org/covid-cases on September 23, 2022 at 21.30 CET
] Raphael, T. & Fazeli, S.. (2022). COVID?s Fifth Wave Shows Us How to Live With the Virus [online] accessed from https://www.bloomberg.com/opinion/articles/2022-03-22/covid-s-fifth-wave-shows-us-how-tolive-with-the-omicron-virus-subvariant on September 23, 2023 at 21.30 CET
] Rehman, M. F., Fariha, C., Anwar, A., et al. (2021). Novel coronavirus disease (COVID-19) pandemic: a recent mini review. Computational and Structural Biotechnology Journal, 19: 612-623. DOI: https://doi.org/10.1016/j. csbj.2020.12.033
] Li, Q., Wu, J., Nie, J., et al. (2020). The impact of mutations in SARSCoV-2 spike on viral infectivity and antigenicity. Elsevier Journal for Cell, 182:1284-1294. DOI: https://doi.org/10.1016/j.cell.2020.07.012
] Gonzalez, M. L., Ortiz, M. S., & Landete, P. (2022). Evolution and clinical trend of SARS-CoV-2 variants. Open Respiratory Archives, 4: 1-3. DOI: https://doi. org/10.1016/j.opresp.2022.100169
] Gorbalenya, A. E., Baker, S. C., Baric, R. S., et al. (2020). The species Severe Acute Respiratory Syndrome ? Related Coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Journal of Microbiology, 5(4): 536-544. DOI: https://doi.org/10.1038/s41564-020-0695-z
] Cevik, M., Kuppalli, K., Kindrachuk, J., Peiris, M.. (2020). Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ Journal of Virology, 371: 1-6. DOI: https://doi.org/10.1136/bmj.m3862
] Hartenian, E., Nandakumar, D., Lari, A., et al. (2020). The molecular virology of coronaviruses. Journal of Biology and Chemistry, 295(37): 12910-12934. DOI: https://doi.org/10.1074/jbc.REV120.013930
] Shah, K.R., Utekar, D.B., Nikam, S.S., et al. (2020). The emergent pandemic ? a review on coronavirus SARSCoV-2: virology, pathogenesis and outbreak. Journal of Infectious Diseases and Epidemiology, 6(3): 1-8. DOI: https://doi.org/10.23937/2474-3658/1510136
] Gennaro, F.D., Pizzol, D., Marotta, C., et al. (2020). Coronavirus Diseases (COVID-19) current status and future perspectives: a narrative review. MDPI International Journal of Environmental Research and Public Health, 17(2690): 1-11. DOI: https://doi.org/10.3390/ ijerph17082690
] Park, Su Eun. (2020). Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). CEP Journal of Virology, 63(4): 119-124. DOI: https://doi. org/10.3345/cep.2020.00493
] Zheng, Jun. (2020). SARS-CoV-2: an emerging coronavirus that causes a global threat. International Journal of Biological Sciences, 16(10): 1678-1685. DOI: https:// doi.org/10.7150/ijbs.45053
] Poltronieri, P., Sun, B., & Mallardo, Massimo. (2015). RNA viruses: RNA roles in pathogenesis coreplication and viral load. Current Genomics, 16(5): 327-335. DOI: https://doi.org/10.2174/1389202916666150707160613
] Velthuis, A. J. W.. (2014). Common and unique features of viral RNA-dependent polymerases. Cellular and Molecular Life Sciences. 71: 4403-4420. DOI: https://doi.org/10.1007/s00018-014-1695-z
] Cirrincione, L., Plescia, F., Ledda, C., et al. (2020). COVID-19 pandemic: prevention and protection measures to be adopted at the workplace. MDPI Journal for Sustainability, 12(3603): 1-18. DOI: https://doi. org/10.3390/su12093603
] Combe, M. & Sanjuan, R. (2014). Variation in RNA Virus Mutation Rates across Host Cells. PLOS Pathogens, 10(1): 1-7. DOI: https://doi.org/10.1371/journal.ppat.1003855
] Monttinen, H. A. M., Ravantti, J. J., & Poranen, M. M. (2021). Structure unveils relationships between RNA virus polymerases. MDPI Journal of Viruses, 13(313): 1-17. DOI: https://doi.org/10.3390/v13020313
] Sonntag, K. C., Darai, G. (1995). Evolution of viral DNA-dependent RNA polymerases. Virus Genes, 11:
-284. DOI: https://doi.org/10.1007/BF01728665
] Hillen, H. S., Kokic, G., Farnung, L., et al. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature,
: 154-156. DOI: https://doi.org/10.1038/s41586-020-2368-8
] Le, T.T., Andreadakis, Z., Kumar, A., et al. (2020). The COVID-19 vaccine development landscape. Nature Reviews for Drug Discovery, 19: 305- 306. DOI: https:// doi.org/10.1038/d41573-020-00073-5
] Motyan, J., Mahdi, M., Hoffka, G., & Tozser, J.. (2022). Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Leaned from HIV-1 Protease. MDPI International Journal of Molecular Sciences, 23(7): 3507. DOI: https://doi.org/10.3390/ ijms23073507
] Guo, S., Liu, K., & Zheng, J.. (2021). The genetic variant of SARS-CoV-2: would it matter for controlling the devastating pandemic?. International Journal of Biological Siences, 17(6): 1476-1485. DOI: https://doi.org/10.7150/ ijbs.59137
] Forni, G., Mantovani, A., et al. (2021). COVID-19 vaccines: where we stand and challenges ahead. Springer Nature Journal for Cell Death & Differentiation, 28: 626-639. DOI: https://doi.org/10.1038/s41418-020-00720-9
] Elshabrawy, Hatem A. (2020). SARS-CoV-2 : an update on potential antivirals in light of SARS-CoV antiviral drug discoveries. MDPI Vaccines, 8(2): 1-33. DOI: https://doi.org/10.3390/vaccines8020335
] Palanisamy, K., Rubavathy, S. M. E., Prakash, M., et al. (2022). Antiviral activities of natural compounds and ionic liquids to inhibit the Mpro of SARS-CoV-2: A computational approach. RSC Advances, 6(2022). DOI: https://doi.org/10.1039/D1RA08604A
] Kokic, G., Hillen, H. S., Tegunov, D., et al. (2021). Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nature Communications, 12(279): 1-7. DOI: https://doi.org/10.1038/s41467-020-20542-0
] Ferdiansyah, A., Nainu, F., Kuldeep, D., et al. (2021). Ramdesivir and its antiviral activity against COVID-19: A systematic review. Clinical Epidemiology and Global Health, 9: 123-127. DOI: https://doi.org/10.1016/j.cegh.2020.07.011
] Gordon, D.E., Jang, G.M., Bouhaddou, M., et al. (2020). A SARS-CoV2 protein interaction map reveals targets for drug repurposing. Nature, 583: 459- 468. DOI: https://doi.org/10.1038/s41586-020-2286-9
] Ullrich, Sven & Nitsche, Christoph. (2020). The SARSCoV-2 main protease as drug target. Elsevier Journal
for Bioorganic & Medicinal Chemistry Letters, 30: 1-8. DOI: https://doi.org/10.1016/j.bmcl.2020.127377
] Alzyoud, L., Ghattas, M. A., Atatreh, N.. (2022). Allosteric binding sites of the SARS-CoV-2 main protease: Potential targets for broad-spectrum anti-coronavirus agents. Drug Design, Development and Therapy, 16: 2463-2478. DOI: https://doi.org/10.2147/DDDT. S370574
] Flynn, J.M., Samant, N., Schneider-Nachum, G., Barkan, D.T., Yilmaz, N.K., Schiffer, C.A., Moquin, S.A., Dovala, D., Bolon, D.N.A. (2022). Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms. eLife, 11, 1-27. DOI: https:// doi.org/10.7554/eLife.77433
] Jin, Z. Du, X., Xu, Y., et al. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289-293. DOI: https://doi.org/10.1038/s41586020-2223-y
] Rungruangmaitree, R., Phoochaijaroen, S., Chimprasit, A., Saparpakorn, P., Pootanakit, K., Tanramluk, D. (2023). Structural analysis of coronavirus main protease for the design of pan-variant inhibitors. Sci Rep, 13(7055). DOI: https://doi.org/10.1038/s41598-023-34305-6
] Firouzi, R., Ashouri, M., Karimi-Jafari, M.H. (2021). Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery. Proteins: Structure, Function, and Bioinformatics, 90(5), 1090-1101. DOI: https://doi.org/10.1002/ prot.26318
] Henghasatporn, K., Harada, R., Wilasluck, P., et al. (2022). Promising SARS-CoV-2 main protease inhibitor ligand-binding modes evaluated using LB-PaCS-MD/ FMO. Sci Rep 12, 17984. DOI: https://doi.org/10.1038/ s41598-022-22703-1
] Chan, H.T.H., Moesser, M.A., Walters, R., et al. (2021). Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding. Chemical Science, 12(13686). DOI: https://doi.org/10.1039/ d1sc03628a
] Stoddard, S.V., Stoddard, S.D., Oelkers, B.K. (2020). Optimization rules for SARS-CoV-2 Mpro antivirals: Ensemble docking and exploration of the coronavirus protease active site. Viruses, 12(9), 942. DOI: https://doi. org/10.3390/v12090942
] Mohamadian, M., Chiti, H., Shoghli, A., et al. (2020). COVID-19: virology, biology and novel laboratory diagnosis. Journal of Metabolic Disease: 1-29. DOI: https:// doi.org/10.1002/jgm.3303
] Gordon, D.E., Jang, G.M., Bouhaddou, M., et al. (2020). A SARS-CoV2 protein interaction map reveals targets for drug repurposing. Nature, 583: 459- 468. DOI: https://doi.org/10.1038/s41586-020-2286-9
] Estrada, E.. (2020). Topological analysis of SARSCoV-2 main protease. AIP Advances Journals of Mathematical Physics Collection, 30: 1-14. DOI: https://doi. org/10.1063/5.0013029
] Zhang, L., Lin, D., Sun, X., et al. (2020). Crystal structure of SARSCoV-2 main protease provides a basis for design of imporved alpha-ketoamide inhibitors. Science Report Journal: 1-8. DOI: https://doi.org/10.1126/science.abb3405
] Zhenming, J., Du, X., Xu, Y., et al. (2020). Structure of Mpro from SARSCoV-2 and discovery of its inhibitors. Nature, 582: 289-312. DOI: https://doi.org/10.1038/ s41586-020-2223-y
] Firouzi, R., Ashouri, M., Jafari, M. H. K.. (2022). Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery. Proteins: Structure, Function, and Bioinformatics, 90(5): 1090-1101. DOI: https://doi.org/10.1002/prot.26318
] Sun, Z., Wang, L., Li, X., et al. (2022). An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. PNAS Journal of Biochemistry, 119(15): 1-9. DOI: https://doi.org/10.1073/pnas.2120913119
] Gunther, S., Reinke, P. Y. A., Garcia, Y. F., et al. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 protease. Science, 372(6542): 642646. DOI: https://doi.org/10.1126/science.abf7945
] Goyal, B., Goyal, D.. (2020). Targeting the dimerization of the main protease of coronaviruses: a potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, 22(6): 297-305. DOI: https://doi.org/10.1021/acscombsci.0c00058
] Mensah, J. O., Ampomah, G. B., Gasu, E. N., et al. (2022). Allosteric modulation of the main protease (Mpro) of SARS-CoV-2 by Casticin ? Insights from molecular dynamics simulations. Chemistry Africa, 488. DOI: https://doi.org/10.1007/s42250-022-00411-7
] Suarez, D., & Diaz, N. (2020). SARS-CoV-2 main protease: a molecular dynamics study. Journal of Chemical Information and Modelling, 60(12): 5815-5831. DOI: https://doi.org/10.1021/acs.jcim.0c00575
] Kneller, D. W., Phillips, G., O?Neill, H. M., et al. (2020). Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 11(3202): 1-6. DOI: https://doi.org/10.1038/s41467-020-16954-7
] Kneller, D. W., Phillips, G., Weiss, K. L.; et al. (2020). Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. Journal of Biology and Chemistry, 295(50): 17365-17373. DOI: https://doi.org/10.1074/jbc.AC120.016154
] Hu, Q., Xiong, Y., Zhu, G., et al. (2022). The SARSCoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Medical Communication: 1-27. DOI: https://doi.org/10.1002/mco2.151
] Monica, G. L., Bono, A., Lauria, A., et al. (2022). Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure ? activity relationship insights and evolution perspectives. Journal of Medicinal Chemistry, 65(19): 12500-12534. DOI: https://doi.org/10.1021/acs.jmedchem.2c01005
] Pathak, M. K., Jha, V., Jain, N. K., et al. (2015). Review on peptidomimetics: A drug designing tool. Indo American Journal of Pharmaceutical Research, 5(12): 3859-3866
] Ko, E., Liu, J., Perez, L. M., et al. (2010). Universal peptidomimetics. Journal of The American Chemical Society, 133(3): 462-477. DOI: https://doi.org/10.1021/ ja1071916
] Mahgoub, R., Mohamed F. E., Alzyoud, L., et al. (2022). The discovery of small allosteric and active site inhibitors of the SARS-CoV-2 main protease via structure-based virtual screening biological evaluation. MDPI Journal of Molecules, 27(6710): 1-21. DOI: https://doi. org/10.3390/molecules27196710
] Kunakbaeva, Z., Carrasco, R., & Rozas, I.. (2003). An approximation to the mechanism of inhibition of cysteine proteases: nucleophilic sulphur addition to Michael acceptors type compounds. Journal of Molecular Structure, 626: 209-216. DOI: https://doi.org/10.1016/S0166-1280(03)00086-1
] Ullrich, S., Ekanayake, K. B., Otting, G., & Nitsche, C.. (2022). Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Elsevier Public Health Emergency Collection : Bioorganic & Medicinal Chemistry Letters, 62. DOI: https://doi.org/10.1016/j. bmcl.2022.128629
] Ng, T. I., Correia, I., Seagal, J., et al. (2022). Antiviral drug discovery for the treatment of COVID-19 infections. MDPI Journal of Viruses, 14(5): 1-27. DOI: https:// doi.org/10.3390/v14050961
] Sacco, M. D., Hu, Y., et al. (2022). The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small molecul drug inhibition. Nature of Cell Research, 32: 498-500. https://doi.org/10.1038/s41422-022-00640-y
] Sedova, M., Jaroszewski, L., Iyer, M, et al. (2022). Monitoring for SARS-CoV-2 drug resistance mutations in broad viral populations. Pre-print. DOI: https://doi. org/10.1101/2022.05.27.493798
] Malinska, M., Dauter, M. Kowiel, M., et al. (2015). Protonation and geometry of histidine rings. Acta Crystallographica Section D - Biological Crystallography, 71(7): 1444-1454. https://doi.org/10.1107/S1399004715007816 [66.] Greasley, S. E., Noell, S., Plotnikova, O., et al. (2022). Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. Journal of Biological Chemistry, 298(6). DOI: https://doi.org/10.1016/j. jbc.2022.101972
] Krishnamoorthy, N. & Fakhro, K.. (2021). Identification of mutation resistance cold spots for targeting the SARSCoV-2 main protease. JUBMB Life, 73:670-675. DOI: https://doi.org/10.1002/iub.2465
] Stromich, L., Wu, N., Barahona, M., et al. (2022). Allosteric hotspots in the main protease of SARS-CoV-2. Journal of Molecular Biology, 434: 1-15. DOI: https:// doi.org/10.1016/j.jmb.2022.167748
] Padhi, A. K., & Tripathi, T. (2022). Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: design, identification, and correlation with global circulating viral genomes. Biochemical and Biophysical Research Communications, 629: 54-60. DOI: https://doi.org/10.1016/j. bbrc.2022.09.010
] Schmidtke, P., & Barril, X. (2010). Understanding and predicting druggability, a high-throughput method for detection of drug binding sites. Journal of Medicinal Chemistry, 53(15): 5858-5867. DOI: https://doi.org/10.1021/ jm100574m
] Alzyoud, L., Bryze, R. A., Al-Sorkhy, M., et al. (2022). Structure-based assessment and druggability classification of protein-protein interaction sites. Nature Scientific Reports, 12(7975): 1-18. DOI: https://doi.org/10.1038/ s41598-022-12105-8
] Kubra, B., Badshah, S. L., Faisal, S., et al. (2022). Inhibition of the predicted allosteric site of the SARS-CoV-2 main protease through flavonoids. Journal of Biomolecular Structure and Dynamics. 41(18): 9103-9120. DOI: https://doi.org/10.1080/07391102.2022.2140201
] Samrat, S. K., Xu, J., Xie, X., et al. (2022). Allosteric inhibitors of the main protease of SARS-CoV-2. Elsevier Public Health Emergency Collection, 205(105381). DOI: https://doi.org/10.1016/j.antiviral.2022.105381
] Ferreira, J. C., Fadl, S., & Rabeh, W. M. (2022). Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. Journal of Biological Chemistry, 298(6). DOI: https://doi. org/10.1016/j.jbc.2022.102023
] Zhenming, J., Zhao, Y., Sun, Y., et al. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology. 27: 529-532. DOI: https://doi. org/10.1038/s41594-020-0440-6
] Silvestrini, L., Belhaj, N., Comez, L., et al. (2021). The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Nature Scientific Reports, 11(9283): 1-16. DOI: https://doi. org/10.1038/s41598-021-88630-9
] Reynolds, C. H. & Halloway, M., K. (2011). Thermodynamics of ligand binding and efficiency. ACS Medic-
inal Chemistry Letters, 2(6): 433-437. DOI: https://doi. org/10.1021/ml200010k
] Azmi, M.H.S. (2021). In silico Drug Repurposing Studies In The Design of Cross-Linkin Assay and Dimer Based Screening System as A Screening System for SARS-CoV-2 Main Protease Inhibitor Development. Translated from the original title in Bahasa Indonesia: ?Studi Drug Repurposing Secara In Silico dalam Perancangan Sistem Penapisan Kandidat Inhibitor Dimerisasi Main Protease SARS-CoV-2 untuk Cross-Linking Assay dan Dimer-Based Screening System?.
] Xiao, T., Cui, M., Zheng, C., Zhang, P., Ren, S., Bao, J., Gao, D., Sun, R., Wang, M., Lin, J., Zhang, L., Li, M., Li, D., Zhou, H., Yang, C. (2021). Both baicalein and gallocatechin gallate effectively inhibit SARS-CoV-2 replication by targeting Mpro and sepsis in mice. Inflammation 45, 1076-1088. DOI: https://doi.org/10.1007/s10753021-01602-z
] Zhu, B., Zhang, Q., Wang, J.R., Mei, X. (2017). Cocrystals of baicalein with higher solubility and enhanced bioavailability. Crystal Growth & Design 17(4), 1893-1901. DOI: https://doi.org/10.1021/acs.cgd.6b01863
] Howe, A.Y.M. & Ventkatraman, S. (2013). The discovery and development of boceprevir: A novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease. Journal of Clinical and Translational Hepatology, 1(1), 22-32. DOI: https://doi.org/10.14218/ JCTH.2013.002XX
] Gl, M., Zhang, L., El-Kilani, H., Sun, X., Zhang, K., Brstrup, M., Hilgenfeld, R. (2022). From repurposing to redesign: optimization of boceprevir to highly potent inhibitors of the SARS-CoV-2 Main Protease. Molecules, 27(13), 4292. DOI: https://doi.org/10.3390/molecules27134292
] Zhuang Z., Zhu, H., Wang, J., Zhu, M., Wang, H., Pu, W., Bian, H., Chen, L., Zhang H. (2013). Pharmacokinetic evaluation of novel oral fluorouracil antitumor drug S-1 in Chinese cancer patients. Acta Pharmacologica Sinica, 34(4), 570-580. DOI: https://doi.org/10.1038/ aps.2012.169
] in, Z. Zhao, Y., Sun, Y., et al. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27, 529-532. DOI: https://doi.org/10.1038/ s41594-020-0440-6
] Zmudzinski, M., Rut, W., Olech, K., et al. (2023). Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase. Scientific Report, 13, 9161. DOI: https://doi.org/10.1038/s41598023-35907-w
] Joyce, R.P., Hu, V.W., Wang, J. (2022). The history, mechanism, and perspectives of nirmatrelvir (PF-07321332):
and orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19 related hospitalization. Medicinal Chemistry Research, 31, 1637-1646. DOI: https://doi.org/10.1007/s00044-02202951-6
] Klacsov M., ?elkov A., Bsi, A., et al. (2022). Interaction of GC376, a SARS-CoV-2 Mpro inhibitor, with model lipid membranes. Colloids Surf B Biointerfaces, 220, 112918. DOI: https://doi.org/10.1016/j.colsurfb.2022.112918
] Kappelhoff, B.S., Huitema, A.D.R., Sankasting, S.U.C., et al. (2005). Population pharmacokinetics of indinavir alone and in combination with ritonavir in HIV-1 infected patients. British Journal of Clinical Pharmacology,
(3), 276-286. DOI: https://doi.org/10.1111/j.1365-2125.2005.02436.x
] Li, Z., Li, X., Huang, Y.Y., et al. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Biophysics and Computational Biology, 117(44), 27381-27387. DOI: https://doi.org/10.1073/ pnas.2010470117
] Lanz, J., Biniaz-Harris, N., Kuvaldina, M., et al. (2023). Disulfiram: Mechanism, applications, and Challenges. Antibiotics, 12(3), 524. DOI: https://doi.org/10.3390/antibiotics12030524
] Pai, V.B., & Nahata, M.C. (1999). Nelfinavir mesylate: a protease inhibitor. Annals of Pharmacotherapy, 33(3). DOI: https://doi.org/10.1345/aph.18089
] Facklam, M.M., Burhenne, J., Ding, R., et al. (2002). Dose-dependent increase of saquinavir bioavailability by the pharmaceutic aid cremophor EL. British Journal of Clinical Pharmacology, 53(6), 576-581. DOI: https://doi.org/10.1046/j.1365-2125.2002.01595.x
] Antonopoulou, I., Sapountzaki, E., Rova, U., Christakopoulos, P. (2022). Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing druglike substances and utilizin nature?s toolbox ob bioactive compounds. Computational Structural Biotechnology Journal, 20, 1306-1344. DOI: https://doi.org/10.1016/j.csbj.2022.03.009
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Muhammad Hamzah Syaifullah Azmi, Ernawati Arifin Giri-Rachman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.