Using Machine Learning to Model Future Distributions of Babandotan Ageratum conyzoides L. Under Climate Change Scenarios (CMIP 5: RCP 2.6 and RCP 8.5) until 2070 in Bandung Areas
DOI:
https://doi.org/10.5614/3bio.2025.7.2.3Keywords:
AUC, Babandotan, RCP, suitableAbstract
Ageratum conyzoides L., locally known as Babandotan, is an important plant in particular in West Java, including in Bandung, due to its medicinal uses. Currently, climate change is known to influence the distribution of organisms by altering climates and making habitats suitable or not suitable. Then, this present study is aiming to use machine learning to model future distributions of A. conyzoides under climate change scenarios CMIP 5 RCP 8.5 until 2070 in Bandung areas. The A. conyzoides occurrences were sampled from nine locations in Bandung and its surrounding areas. Machine learning using the R platform and MaxEnt algorithm was used to develop species distribution modeling (SDM). The model was then simulated using RCP 2.6 and 8.5 scenarios for the years 2050 and 2070. The quality of the model was assessed using AUC values. The current SDM model shows suitable habitats for A. conyzoides are sizing 1250 km2, mostly located in Bandung (56%), Kota Bandung (24%), and Sumedang (16%). The AUC value was 0.964, showing that the resulting model is good. Climate change will affect A. conyzoides in the future. Based on the RCP model, suitable habitats for A. conyzoides will be shifted northward, eliminating the suitable habitats in the south of Bandung, as can be seen in 2070.
References
] Sivakrishnan S, Kavitha J. Traditional Uses of Ageratum conyzoides And Its Bioactivities - A Short Review. JETIR. 2017 [cited 2023 November 1]; 4(7): 229?233.
] Lim H, Karimuna L, Rembon FR, Supriatun T. Growth and Potential of Goat Weed (Ageratum conyzoides L.) as Host Plant for Propagation of Mycorrhiza Fungi. Open Access Library Journal. 2016 [cited 2023 November 1];3: 1-9. DOI: 10.4236/oalib.1102640.
] Shekhar TC, Anju GA. Comprehensive Review on Ageratum conyzoides Linn.(Goat weed). Int.J.Pharm. Phytopharmacol.Res. 2012 [cited 2023 November 1]:1(6): 391-395.
] Raihandhany R, Dwiartama A, Ratnasih R. Short Note on Asteraceae as Traditional Food and Medicinal Plants in Cihanjawar Village, Purwakarta Regency, West Java. 3Bio Journal of Biological Science, Technology and Management. 2023 [cited 2023 November 1]; 5(1): 162-167. DOI: 10.5614/3bio.2023.5.1.5.
] Doulabian S, Golian S, Toosi AS, Murphy C. Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change. 2021 [cited 2023 November 1]; 12(1): 166?184.
] Stephenson K, Wilson B, Taylor M, Mclaren K, Veen R, Kunna J, Campbell J. Modelling climate change impacts on tropical dry forest fauna. Sustainability. 2022 [cited 2023 November 1]; 14(8). DOI: 10.3390/SU14084760.
] Schez Pez M, Feria Arroyo TP., Venegas Barrera CS, Sosa-Gutirez C, Torres J, Brown KA, Gordillo Pez G. Predicting the impact of climate change on the distribution of Rhipicephalus sanguineus in the Americas. Sustainability. 2023 [cited 2023 November1]; 15(5): 4557. DOI: 10.3390/SU15054557.
] Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K. Umbreen S. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. In Pakistan. Sustainability. 2022 [cited 2023 November 1]; 14(12):7215. DOI: 10.3390/SU1412721.
] Marcer A, S L, Molowny-Horas R, Pons X., Pino J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation. 2013 [cited 2023 November 1]; 166: 221?230. DOI: 10.1016/J. BIOCON.2013.07.001.
] Fois M, Cuena-Lombra A, Fenu G, Bacchetta G. Using species distribution models at a local scale to guide poorly known species, review: methodological issues and future directions. Ecological Modelling. 2018 [cited 2023 November 1]; 385: 124?132. DOI: 10.1016/J. ECOLMODEL.2018.07.018
] Azkia SR, Aliyah SR, Supriatna A. Inventarisasi Dan Karakterisasi Famili Poaceae Di Cibiru Hilir, Cileunyi, Kabupaten Bandung. Student Scientific Creativity Journal. 2023 [cited 2023 November 1]; 1(5): 76?81. DOI: 10.55606/sscj-amik.v1i5.1875.
] Setyawati T, Sari N, Indra PB, Gilang TR. A guide book of invasive plant species in Indonesia. Bogor: Gilang Teguh Raharjo Penerbit; 2015.
] Tjitrosoedirdjo SS, Mawardi I, Tjitrosoerdirdjo S. 75 important invasive plant species in Indonesia. Bogor: Seameo Biotrop; 2016.
] Soerdjani, M, Kostermans, Tjitrosoepomo G. Weeds of rice in Indonesia. Jakarta: Balai Pustaka; 1987.
] Dong H, Zhang N, Shen S, Zhu S, Fan S, Lu Y. Effects of climate change on the spatial distribution of the threatened species Rhododendron purdomii in Qinling- Daba mountains of Central China: implications for conservation. Sustainability. 2023 [cited 2023 November1]; 15(4), 3181. DOI: 10.3390/SU15043181.
] Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K, Umbreen S. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan. Sustainability. 2022 [cited 2023 November 1]; 14(12):7215. DOI: 10.3390/SU1412721.
] Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017 [cited 2023 November 1]; 37(2): 1-14. DOI: 10.1002/joc.5086.
] Khanum R, Mumtaz A, Kumar S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica. 2013
[cited 2023 November 1]; 49: 23-31. DOI: 10.1016/J. ACTAO.2013.02.007.
] Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of liliaceae in Nepal. Journal of Mountain Science. 2017 [cited 2023 November 1];14(3): 558-570. DOI: 10.1007/S11629-015-3822-1.
] Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius using Maxent model under climate change in China. Global Ecology and Conservation. 2018 [cited 2023 November 1]; 16: E00477. DOI: 10.1016/J. GECCO. 2018.E00477.
] Pru C, Trochet A, Bertrand R, Isselin-Nondedeu F. Modeling potential distributions of three European amphibian species comparing ENFA and Maxent. Herpetological Conservation and Biology. 2018. [cited 2023 November 1]; 13(1): 91?104.
] As?ary M, Setiawan Y, Rinaldi D. 2023. Analysis of changes in habitat suitability of the Javan Leopard,2000?2020. Diversity 2023 [cited 2023 November 1];15: 529. DOI: 10.3390/d15040529.
] Mao M, Chen S, Qian Z, Xu Y. Using Maxent to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects. 2022 [cited 2023 November 1]; 13(11): 1008. DOI:10.3390/ INSECTS13111008
] Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A. Maxent modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests. 2022. [cited 2023 November 1]; 13(5): 715. DOI: 10.3390/F13050715.
] Bivand RR. Packages for analyzing spatial data: a comparative case study with areal data. Geographical Analysis. 2022 [cited 2023 November 1]; 54:488-518. DOI: 10.1111/gean.12319.
] Lemenkova P. 2020. Using R packages ?Tmap?, ?Raster? And ?Ggmap? for cartographic visualization: an example of DEM-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova - Geografski fakultet Univerziteta u Beograd. 2020 [cited 2023 November 1];68: 99?116. DOI: 10.5937/zrgfub2068099L.
] Promnikorn K, Jutamanee K, Kraichak E. MaxEnt model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agriculture and Natural Resources. 2019 [cited 2023 November 1]; 53(1): 44?48.
] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 2005 [cited 2023 November 1]; 25(15): 1965?1978. DOI: 10.1002/joc.1276.
] IPOC. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Lin E, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque J, ManningM, Matthews B, Meehl J, Meyer L, Mitchell J, Zurek M. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change. 2008 [cited 2023 November 1]; 1?124.
] Vuuren DPV, Edmonds J, Kainuma M, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. The representative concentration pathways: an overview. Climate Change. 2009 [cited 2023 November 1]; 109(213): 5?31. DOI:10.1007/s10584-011-0148-z.
] Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, La Rovere E, Yohe G. Report of 2.6 Versus
9 Watts/m2 RCPP evaluation panel. Geneva: IPCC Secretariat; 2009.
] Putri LSE, Dasumiati, Kristiyanto, Mardiansyah, Malik C, Leuvinadrie LP, Mulyono EA. Ethnobotanical study of herbal medicine in Ranggawulung UrbanForest, Subang District, West Java, Indonesia. Biodiversitas. 2016 [cited 2023 November 1]; 17(1):172-176. DOI:10.13057/biodiv/d170125.
] Gunawan, Sulistijorini, Chikmawati T, Sobir. Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia Using MaxEnt Modelling. Biodiversitas. 2021 [cited 2023 November 1]; 22 (5): 2646-2653. DOI:0.13057/biodiv/d220523.
] Gebrewahi Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanemariam K, Adissu G, Abreha G, Darcha G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes. 2020 [cited 2023 November 1];9(6):1-15. DOI: 10.1186/s13717-019-0210-8.
] Kaur A, Kaur S, Singh HP, Datta A, Chauhan BS, Ullah H, Kohli RK, Batish DR. Ecology, Biology, Environmental Impacts, and Management of an Agro- Environmental Weed Ageratum conyzoides. Plants. 2023 [cited 2023 November 1]; 12(12):2329. DOI: 10.3390/plants12122329.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andriwibowo Andriwibowo, Vita Meylani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.