Enhancing Lipid Extraction from Chlorella vulgaris Microalgae for Biodiesel Production: Application of Natural Deep Eutectic Solvent (NaDES) in Cell Disruption
DOI:
https://doi.org/10.5614/3bio.2024.6.2.2Keywords:
Chlorella vulgaris, Natural deep eutectic solvent, Cell disruption, Lipid extraction, Fatty acid profileAbstract
Natural deep eutectic solvent (NaDES) pre-treatment offers a promising alternative strategy to enhance lipid extraction efficiency from microalgae by influencing the integrity of the cell wall, thereby improving solvent accessibility to the cytoplasm and facilitating the release of intracellular lipid content. In this study, Chlorella vulgaris biomass underwent pre-treatment with four different NaDES formulations, each based on choline chloride (ChCl) with varying molar ratios: ChCl : Glycerol (1:2), ChCl : Glycerol (1:1), ChCl : Oxalic Acid (1:2), dan ChCl : Oxalic Acid (1:1).We analyzed the impact of these NaDES pre-treatments on lipid yield and fatty acid profiles. The extracted lipids exhibited an acid value of 42.56 mg KOH/g fat and a free fatty acid content of 0.25%. Samples subjected to NaDES treatment showed significant increases in lipid extraction efficiency, with lipid yields ranging from 1.25 to 2.3 times higher than those of untreated biomass extracted using hexane (p < 0.05). The highest lipid yield was observed in samples treated with ChCl : Glycerol (1:1), achieving a total lipid yield of 19.44% (w/w), more than double that of the untreated biomass. Although minor variations in fatty acid profiles were noted due to the NaDES treatment, the dominant fatty acids in each variation remained palmitic acid (C16:0, 21-29.5%) and oleic acid (C18:1, 13-43.88%).
References
] Ediger V?. An integrated review and analysis of multi-en- ergy transition from fossil fuels to renewables. Energy Energy Procedia. 2019;156:2-6.
] Demirel Y, Allen J, Unlu S, Black P, Riekhof W. Integra- tion of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery. Bioresour Bioprocess. 2018;5(1):1-28.
] Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol. 2016;218:123-128.
] Nagappan S, Devendran S, Tsai PC, Dahms HU, Pon- nusamy VK. Potential of two-stage cultivation in mi- croalgae biofuel production. Fuel. 2019;252:339-349.
] Zhou W, Wang Z, Alam MA, Xu J, Zhu S, Yuan Z, et al. Repeated utilization of ionic liquid to extract lipid from algal biomass. Int J Polym Sci. 2019;2019:9209210.
] Rado?evic K, CvjetkoBubalo M, GaurinaSrc?ek V, Gr- gas D, LandekaDragic?evic T, Radojc?icRedovnikovic
I. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Envi- ron Saf. 2015;112:46?53.
] Zhang Q, Vigier KD, Royer S, Je F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41(21):7108-7146.
] Paiva, Alexandre & Craveiro, Rita & Aroso, Ivo & Mar- tins, M. & Reis, Rui L. & Duarte, Ana. (2014). Natural Deep Eutectic Solvents ? Solvents for the 21st Century. ACS Sustainable Chemistry & Engineering. 2. 1063? 1071. 10.1021/sc500096j.
] Bligh EG, Dyer WJ. A rapid method of total lipid ex- traction and purification. Can J Biochem Physiol. 1959;37(8):911-917.
] Krishnan V, Uemura Y, Thanh NT, Khalid NA, Os- man N, Mansor NA. Three types of Marine microal- gae and Nannocholoropsis oculata cultivation for po- tential source of biomass production. J Phys Conf Ser. 2015;622(1):012034.
] Fatemeh L, Mohsen D. Effects of environmental factors on the growth, optical density and biomass of the green algae Chlorella vulgaris in outdoor conditions. J Appl Sci Environ Manage. 2016;20(1):133-139.
] Ma?mun S, Wahyudi A, Raghdanesa AS. Growth rate measurements of Chlorella vulgaris in a photo- bioreactor by Neubauer-improved counting chamber and densitometer. IOP Conf Ser Earth Environ Sci. 2022;963(1):012015.
] Mohsenpour SF, Willoughby N. Effect of CO2 aeration on cultivation of microalgae in luminescent photobiore- actors. Biomass Bioenergy. 2016;85:168-177.
] Machado A, Pereira H, Costa M, Santos T, Carvalho B, Soares M, et al. Development of an organic culture me- dium for autotrophic production of Chlorella vulgaris biomass. Appl Sci. 2020;10(6):2156.
] Ratomski P, Hawrot-Paw M. Production of Chlorella vulgaris biomass in tubular photobioreactors during dif- ferent culture conditions. Appl Sci. 2021;11(7):3106.
] Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH. Catalytic hydroprocessing of biomass fast pyrolysis bio?oil to produce hydrocarbon products. Envi- ron Prog Sustain Energy. 2009;28(3):441-449.
] Gong X, Zhang B, Zhang Y, Huang Y, Xu M. Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels. 2013;28(1):95?103. doi:10.1021/ef401500z.
] Oasmaa A, Elliott DC, Korhonen J. Acidity of biomass fast pyrolysis bio-oils. Energy Fuels. 2010;24(12):6548- 6554.
] Sharma AK, Sahoo PK, Singhal S, Joshi G. Exploration of upstream and downstream process for microwave as- sisted sustainable biodiesel production from microalgae Chlorella vulgaris. Bioresour Technol. 2016;216:793- 800.
] Mallick N, Mandal S, Singh AK, Bishai M, Dash A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol. 2011;87(1):137?145.
] Park JY, Nam B, Choi SA, Oh YK, Lee JS. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris. Bioresour Technol. 2014;166:620- 624.
] Tsigie YA, Huynh LH, Ismadji S, Engida AM, Ju YH. In situ biodiesel production from wet Chlorella vulgaris under subcritical condition. Chem Eng J. 2012;213:104- 108.
] Yin NC, Yaakob Z, Ali E, Min AM, Wa NS. Character- ization of various microalgae for biodiesel fuel produc- tion. J Mater Sci Eng A. 2011;1(1A):80.
] Widjaja A, Chien CC, Ju YH. Study of increasing lipid production from fresh water microalgae Chlorella vul- garis. J Taiwan Inst Chem Eng. 2009;40(1):13-20.
] Ngatcha ADP, Muhammad G, Lv Y, Xiong W, Zhao A, Xu J, et al. Microalgae biomass pre-treatment with deep eutectic solvent to optimize lipid isolation in biodiesel production. Biomass Convers Biorefin. 2022;1-11.
] Cheng J, Guo H, Qiu Y, Zhang Z, Mao Y, Qian L, et al. Switchable solvent N, N, N?, N?-tetraethyl-1, 3-pro- panediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. Bioresour Technol. 2020;312:123607. https://doi.org/10.1016/j. biortech.2020.123607.
] Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, et al. One-step production of biodiesel from wet and un- broken microalgae biomass using deep eutectic solvent. Bioresour Technol. 2017;238:157-163.
] Mehariya S, Sharma N, Iovine A, Casella P, Marino T, Larocca V, et al. An integrated strategy for nutraceuti- cals from Haematococcus pluvialis: from cultivation to extraction. Antioxidants. 2020;9(9):825.
] Ramos MJ, Ferndez CM, Casas A, Rodruez L, Pez Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261-268.
] Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006;83:823?833.
] Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, et al. An overview of potential ole- aginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms. 2020;8(3):434.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Neil Priharto, Nadia Yasmin Dicky

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.