In Silico Phylogenetic Analysis of Lamiaceae Based on ITS, matK, and rbcL DNA Barcodes

Authors

  • Chayra Endlessa Biology Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia
  • Topik Hidayat Biology Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia
  • Siti Sriyati Biology Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.5614/3bio.2026.8.1.4

Keywords:

DNA barcodes, Lamiaceae, molecular phylogenetics, species authentication

Abstract

Lamiaceae, widely used as herbal medicine, is increasingly vulnerable to adulteration driven by market demand, compromising product safety and efficacy. Prevention is challenging due to morphological similarities; thus, DNA-based phylogenetics offer an alternative for accurate species authentication. However, Lamiaceae phylogenetics remain complicated by inconsistencies between morphological and DNA data. This study reconstructed Lamiaceae phylogeny using partial ITS, matK, and rbcL barcodes to evaluate their potential application in species authentication and adulteration prevention. Sequences for 52 species across 11 genera (Spathodea campanulata: outgroup) were obtained from NCBI GenBank, aligned, and trimmed. Four maximum parsimony (MP) trees were constructed in MEGA 11 (three single-barcode, one concatenated). The concatenated dataset was also analyzed by maximum likelihood (ML). Tree robustness was evaluated with bootstrapping, consistency index (CI), and retention index (RI). matK had the longest mean sequence (785.6 bp), rbcL the highest homology (83.5%), and ITS the most parsimony-informative sites (40.3%). MP trees exhibited moderate homoplasy (mean CI = 0.63) but strong synapomorphic signal (mean RI = 0.83). Individual barcodes produced similar genus groupings, yet misplaced several species. Concatenation corrected these positions across MP and ML trees, resolving six robust monophyletic clades (bootstrap >70%), broadly consistent with earlier phylogenies: Callicarpa; Scutellaria; Clerodendrum, Lamium, and Stachys; Salvia; Thymus, Origanum, and Mentha; Orthosiphon and Ocimum. Topological discrepancies with prior studies likely reflect differences in barcode choice and taxon sampling. Concatenated barcodes improved phylogenetic resolution in Lamiaceae, producing clades that identify potential adulterants and guide DNA marker development for species authentication and adulterant detection.

References

] Ahmed SM. Molecular identification of Lavendula dentata L., Mentha longifolia (L.) Huds. and Mentha piperita L. by DNA barcodes. Bangladesh J Plant Taxon. 2018;25(2):149?57. doi: 10.3329/bjpt.v25i2.39519

] The Angiosperm Phylogeny Group IV, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181(1):1?20. doi:10.1111/boj.12385

] Allkin B. Useful plants ? medicines: At least 28,187 plant species are currently recorded as being of medicinal use. In: Willis KJ, editor. State of the world?s plants 2017. London: Royal Botanic Gardens, Kew. 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK464488/

] Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, et al. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res Manag. 2018;2018(1):7801543. doi: 10.1155/2018/7801543

] Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol. 2021 Jan;19(2):1?15. doi: 10.1186/s12915-020-00931-z

] Nazar N, Howard C, Slater A, Sgamma T. Challenges in medicinal and aromatic plants DNA barcoding Lessons from the Lamiaceae. Plants. 2022;11(1):137. doi: 10.3390/plants11010137

] Thakur VV, Tripathi N, Tiwari S. DNA barcoding of some medicinally important plant species of Lamiaceae family in India. Mol Biol Rep. 2021;48(4):3097?106. doi: 10.1007/s11033-021-06356-3

] Marieschi M, Torelli A, Bianchi A, Bruni R. Detecting Satureja montana L. and Origanum majorana L. by means of SCAR-PCR in commercial samples of Mediterranean oregano. Food Control. 2011;22(3-4):542?8. doi: 10.1016/j.foodcont.2010.10.001

] Upton R, David B, Gafner S, Glasl S. Botanical ingredient identification and quality assessment: strengths and limitations of analytical techniques. Phytochem Rev. 2020;19(5):1157?77. doi: 10.1007/s11101-019-09625-z

] Upton R, Dayu RH. Skullcap Scutellaria lateriflora L.: An American nervine. J Herb Med. 2012;2(3):76?96. doi: 10.1016/j.hermed.2012.06.004

] Erickson DL, Driskell AC. Construction and analysis of phylogenetic trees using DNA barcode data. In: Kress W, Erickson D, editors. DNA barcodes: methods in molecular biology. New Jersey: Humana Press; 2012.

Chapter 19. doi: 10.1007/978-1-61779-591-6_19

] Li B, Cantino PD, Olmstead RG, Bramley GLC, Xiang CL, Ma ZH, et al. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci Rep. 2016;6(1):34343. doi: 10.1038/ srep34343

] Aneva I, Zhelev P, Bonchev G, Boycheva I, Simeonova S, Kancheva D. DNA barcoding study of representative Thymus species in Bulgaria. Plants. 2022;11(3):270. doi: 10.3390/plants11030270

] Drew BT, Sytsma KJ. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). Am J Bot. 2012; 99(5):933?53. doi: 10.3732/ajb.1100549

] Jabeen A, Guo B, Abbasi BH, Shinwari ZK, Mahmood T. Phylogenetics of selected Mentha species on the basis of rps8, rps11 and rps14 chloroplast genes. J Med Plant Res. 2012;6(1):30?6. doi: 10.5897/jmpr11.658

] Salmaki Y, Zarre S, Ryding O, Lindqvist C, Brchler C, Heubl G. Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Mol Phylogenet Evol. 2013; 69(3):535?51. doi: 10.1016/j. ympev.2013.07.024

] Vineesh S, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum americanum Linnaeus 1755 and phylogenetic analysis among the Lamiaceae family. Mitochondrial DNA B Resour. 2023;8(10):1077-

doi: 10.1080/23802359.2023.2264545

] Yu D, Pei Y, Cui N, Zhao G, Hou M, Chen Y, et al. Comparative and phylogenetic analysis of complete chloroplast genome sequences of Salvia regarding its worldwide distribution. Sci Rep. 2023;13(1):14268. doi: 10.1038/s41598-023-41198-y

] Salimov RA, Parolly G, Borsch T. Overall phylogenetic relationships of Scutellaria (Lamiaceae) shed light on the origin of the predominantly Caucasian and Irano-Turanian S. orientalis group. Willdenowia. 2021;51(3):395?427. doi: 10.3372/wi.51.51307

] CBOL Plant Working Group, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratanasingham S, et al. DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106(31):12794-97. doi: 10.1073/pnas.0905845106

] Simpson MG. Plant systematics. 2nd edition. Cambridge: Academic Press; 2010. 741 p. Available from: https://booksite.elsevier.com/9780123743800/

] China Plant BOL Group, Li D, Gao L, Li H, Wang H, Ge X, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA. 2011;108(49):19641-6. doi: 10.1073/pnas.1104551108

] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673?80. doi: 10.1093/ nar/22.22.4673

] Tamura K, Stecher G, Kumar S, MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022?7. doi: 10.1093/molbev/msab120

] Van Iersel L, Jones M, Scornavacca C. Improved maximum parsimony models for phylogenetic networks. Syst Biol. 2017;67(3):518?42. doi: 10.1093/sysbio/ syx094

] Munjal G, Hanmandlu M, Srivastava S. Phylogenetics algorithms and applications. In: Hu YC, Tiwari S, Mishra K, Trivedi M, editors. Ambient communications and computer systems. Advances in intelligent systems and computing, vol 904. Singapore: Springer; 2019. p. 187-97. doi: 10.1007/978-981-13-5934-7_17

] Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512?26. doi: 10.1093/oxfordjournals. molbev.a040023

] Ojha KK, Mishra S, Singh VK. Computational molecular phylogeny: concepts and applications. In: Singh DB, Pathak RK, editors. Bioinformatics: methods and applications. Cambridge: Academic Press; 2022. Chapter 5. doi: 10.1016/B978-0-323-89775-4.00025-0

] Klingenberg CP, Gidaszewski NA. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol. 2010;59(3):245-61. doi: 10.1093/sysbio/syp106

] Mickevich MF, Lipscomb D. Parsimony and the choice between different transformations for the same character set. Cladistics. 1991;7(2):111?39. doi: 10.1111/j.1096-0031.1991.tb00028.x

] McCune AR, Schimenti JC. Using genetic networks and homology to understand the evolution of phenotypic traits. Curr Genomics. 2012; 13(1):74?84. doi: 10.2174/138920212799034785

] Halmschlag CB, Maura CCdeM, Brambach F, Siregar IZ, Gailing O. Molecular and morphological survey of Lamiaceae species in converted landscapes in Sumatra. PLoS ONE. 2022;17(12):e0277749. doi: 10.1371/journal.pone.0277749

] Yao X, Tan Y, Yang J, Wang Y, Corlett RT, Manen JF. Exceptionally high rates of positive selection on the rbcL gene in the genus Ilex (Aquifoliaceae). BMC Evol Biol. 2019;19(1):192. doi: 10.1186/s12862-019-1521-1

] Xu JH, Liu Q, Hu W, Wang T, Xue Q, Messing J. Dynamics of chloroplast genomes in green plants. Genomics. 2015;106(4):221?31. doi: 10.1016/j.ygeno.2015.07.004

] Masters JC, Pozzi L. Phylogenetic inference. In: Fuentes A, editor. The international encyclopedia of primatology. New Jersey: John Wiley & Sons, Inc.; 2017. p. 1-6. doi: 10.1002/9781119179313.wbprim0419

] Kapli P, Flouri T, Telford MJ. Systematic errors in phylogenetic trees. Curr Biol. 2021;31(2):R59-R64. doi: 10.1016/j.cub.2020.11.043

] Hennig W. Phylogenetic systematics. Illinois: University of Illinois Press; 1966. doi: 10.1002/mmnd.19820290131

] Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.

Syst Biol. 1993;42(2):182-92. doi: 10.2307/2992540

] Zhao F, Drew BT, Chen YP, Hu GX, Li B, Xiang CL. The chloroplast genome of Salvia: Genomic characterization and phylogenetic analysis. Int J Plant Sci. 2020;181(8):812-30. doi: 10.1086/710083

] Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer R, et al. Labiatae. In: Kadereit JW, editor. Flowering plants, dicotyledons. The families and genera of vascular plants, vol 7. Berlin: Springer; 2004. p. 167-

doi: 10.1007/978-3-642-18617-2_11

] Bendiksby M, Brysting AK, Thorbek L, Gussarova G, Ryding O. Molecular phylogeny and taxonomy of the genus Lamium L. (Lamiaceae): Disentangling origins of presumed allotetraploids. Taxon. 2011;60(4):986?1000. doi: 10.1002/tax.604004

] Li B, Olmstead RG. Two new subfamilies in Lamiaceae. Phytotaxa. 2017;313(2):222?6. doi: 10.11646/phytotaxa.313.2.9

] Drew BT, Gonzez-Gallegos JG, Xiang CL, Kriebel R, Drummond CP, Walker JB, et al. Salvia united: The greatest good for the greatest number. Taxon. 2017;66(1):133?45. doi: 10.12705/661.7

] Walker JB, Sytsma KJ. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot. 2007;100(2):375?91. doi: 10.1093/aob/mcl176

] Moon HK, Smets E, Huysmans S. Phylogeny of tribe Mentheae (Lamiaceae): The story of molecules and micromorphological characters. Taxon. 2010; 59(4):1065?76. doi: 10.1002/tax.594007

] Brchler C, Meimberg H, Heubl G. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) ? Taxonomy, biogeography and conflicts. Mol Phylogenet Evol. 2010;55(2):501?23. doi: 10.1016/j.

ympev.2010.01.016

] Paton AJ, Springate D, Suddee S, Otieno D, Grayer RJ, Harley MM, et al. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Mol Phylogenet Evol. 2004 A;31(1):277?99. doi: 10.1016/j.ympev.2003.08.002

] Su Y, Li B, Liang W, Wen H, Wei W. The complete chloroplast genome of Orthosiphon aristatus (Blume) Miq. (Lamiaceae). Mitochondrial DNA B Resour. 2024 Jan;9(1):79?82. doi: 10.1080/23802359.2023.2301012

] Sudarmono, Kim SY, Paik JH. Contradictory between morphology and phylogenetic trees of Orthosiphon spp. (Lamiaceae) from Indonesia. IOP Conf Ser: Earth Environ Sci. 2020;457(1):012030. doi: 10.1088/1755-1315/457/1/012030

] Bast F, Rani P, Meena D. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent. Sci World J. 2014;2014(1):1?6. doi: 10.1155/2014/847482

] Xiang CL, Zhao F, Cantino PD, Drew BT, Li B, Liu ED, et al. Molecular systematics of Caryopteris (Lamiaceae) and its allies with reference to the molecular phylogeny of subfamily Ajugoideae. Taxon. 2018;67(2):376-94. doi: 10.12705/672.7

] Yuan YW, Mabberley DJ, Steane DA, Olmstead RG. Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy. Taxon. 2010 Feb;59(1):125-33. doi: 10.1002/tax.591013

] Satthaphorn J, Paton AJ, Zuntini AR, Cowan RS, Leeratiwong C. Phylogeny and infrageneric classification of Clerodendrum (Lamiaceae). Bot J Linn Soc. 2023;204(2):103-36. doi: 10.1093/botlinnean/boad045

] Scheen A, Bendiksby M, Ryding O, Mathiesen C, Albert VA, Lindqvist C. Molecular phylogenetics, character evolution, and suprageneric classification of Lamioideae (Lamiaceae). Ann Missouri Bot Gard. 2010;97(2):191-217. doi: 10.3417/2007174

] Mennema J. A taxonomic revision of Lamium (Lamiaceae). Leiden: Brill; 1989. 196 p. doi: 10.1163/9789004628113

] Bendiksby M, Thorbek L, Scheen AC, Lindqvist C, Ryding O. An updated phylogeny and classification of Lamiaceae subfamily Lamioideae. Taxon. 2011;60(2):471?84. doi: 10.1002/tax.602015

] Wiens JJ, Tiu J. Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS ONE. 2012;7(8):e42925. doi: 10.1371/journal.pone.0042925

] Zhao F, Li B, Drew BT, Chen YP, Wang Q, Yu WB, et al. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae). PLoS ONE. 2020;15(5):e0232602. doi:

1371/journal.pone.0232602

] Paton A. A global taxonomic investigation of Scutellaria (Labiatae). Kew Bull. 1990;45(3):399-450. doi: 10.2307/4110512

] Ryding O. Amount of calyx fibres in Lamiaceae, relation to calyx structure, phylogeny and ecology. Plant Syst Evol. 2007;268(1-4):45-58. doi: 10.1007/s00606-007-0537-y

] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014 J;4:177. doi: 10.3389/ fphar.2013.00177

] Mahomoodally F, Suroowan S, Sreekeessoon U. Adverse reactions of herbal medicine?A quantitative assessment of severity in Mauritius. J Herb Med. 2018 Jun;12:49-65. doi: 10.1016/j.hermed.2018.01.006

] Seethapathy GS, Balasubramani SP, Venkatasubramanian P. nrDNA ITS sequence based SCAR marker to authenticate Aconitum heterophyllum and Cyperus rotundus in Ayurvedic raw drug source and prepared herbal products. Food Chem. 2014;145:1015-20. doi: 10.1016/j.foodchem.2013.09.027

] Li Z, Duan B, Zhou Z, Fang H, Yang M, Xia C, Zhou Y, Wang J. Comparative analysis of medicinal plants Scutellaria baicalensis and common adulterants based on chloroplast genome sequencing. BMC Genomics. 2024 Jan;25(1). doi: 10.1186/s12864-023-09920-2

] Huynh DL, Sharma N, Kumar Singh A, Singh Sodhi S, Zhang JJ, Mongre RK, et al. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med. 2017;15(1):15-40. doi: 10.1016/s1875-5364(17)30005-5

] Jiang D, Zhao Z, Zhang T, Zhong W, Liu C, Yuan Q, et al. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria.

Genes. 2017; 8(9):227. doi: 10.3390/genes8090227

] Tarhan S, Telci I, Tuncay MT, Polatci H. Product quality and energy consumption when drying peppermint by rotary drum dryer. Ind Crops Prod. 2010; 32(3):420-7. doi: 10.1016/j.indcrop.2010.06.003

] Hudz N, Kobylinska L, Pokajewicz K, Hor?inovSedlkovV, Fedin R, Voloshyn M, et al. Mentha piperita: Essential oil and extracts, their biological activities, and perspectives on the development of new medicinal and cosmetic products. Molecules. 2023; 28(21):7444. doi: 10.3390/molecules28217444

Downloads

Published

2026-01-04