Quantitative Measure to Differentiate Wicket Spike from Interictal Epileptiform Discharges

Authors

  • Suryani Gunadharma Department of Neurology Hasan Sadikin Hospital-Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
  • Ahmad Rizal Department of Neurology Hasan Sadikin Hospital-Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
  • Rovina Ruslami Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
  • Tri Hanggono Achmad Department of Biochemistry, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
  • See Siew Ju Department of Neurology Singapore General Hospital, Singapore 168753
  • Juni Wijayanti Puspita 1) Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia 2) Faculty of Mathematics and Natural Science, Universitas Tadulako, Palu, Indonesia
  • Sapto Wahyu Indratno Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
  • Edy Soewono Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia

DOI:

https://doi.org/10.5614/cbms.2021.4.1.2

Keywords:

epilepsy, interictal epileptiform discharges, Wicket spike

Abstract

A number of benign EEG patterns are often misinterpreted as interictal epileptiform discharges (IEDs) because of their epileptiform appearances, one of them is wicket spike. Differentiating wicket spike from IEDs may help in preventing epilepsy misdiagnosis. The temporal location of IEDs and wicket spike were chosen from 143 EEG recordings. Amplitude, duration and angles were measured from the wave triangles and were used as the variables. In this study, linear discriminant analysis is used to create the formula to differentiate wicket spike from IEDs consisting spike and sharp waves. We obtained a formula with excellent accuracy. This study emphasizes the need for objective criteria to distinguish wicket spike from IEDs to avoid misreading of the EEG and misdiagnosis of epilepsy.

References

Markand, O.M., Pearls, perils, and pitfalls in the use of the electroencephalogram, Seminars in Neurology, 23, pp. 7-46, 2003.

Santoshkumar, B., Chong, J.J.R., Blume, W.T., McLachlan, R.S., Young, G.B., Diosy D.C., Burneo, J.G. and Mirsattari, S.M., Prevalence of benign epileptiform variants, Clinical Neurophysiology, 120(5), pp. 856-861, 2009.

Westmoreland, B.F., Epileptiform electroencephalographic patterns, Mayo Clinic Proceedings, 71(5), pp. 501-511, 1996.

Pillai, J. and Sperling, M.R., Interictal EEG and the diagnosis of epilepsy, Epilepsia, 47(Suppl. 1), pp. 14-22, 2006.

Benbadis, S.R. and Lin, K., Errors in EEG interpretation and misdiagnosis of epilepsy which EEG patterns are overread?, European Neurology, 59(5), pp. 267-271, 2008.

Vallabhaneni, M., Baldassari, L.E., Scribner, J.T., Cho, Y.W. and Motamedi, G.K., A case-control study of wicket spikes using video-EEG monitoring, Seizure, 22(1), pp. 14-19, 2013.

Adjouadi, M., Sanchez, D., Cabrerizo, M., Ayala, M., Jayakar, P., Yaylali, I. and Barreto, A., Interictal spike detection using the walsh transform, IEEE Transactions on Biomedical Engineering, 51, pp. 868-872, 2004.

Adjouadi, M., Cabrerizo, M., Ayala, M. and Sanchez, D., Detection of interictal spikes and artifactual data through orthogonal transformations, Journal of clinical Neurophysiology, 22(1), pp. 53-64, 2005.

Cabrerizo, M., Ayala, M., Jayakar, P. and Adjouadi, M., Classification and medical diagnosis of scalp EEG using artificial neural networks, International Journal of Innovative Computing, Information and Control, 12(7), pp. 6905-6918, 2011.

Tito, M.T., Adjouadi, M., Cabrerizo, M., Ayala, M., Yaylali, I., Barreto, A. and Rishe, N., Application of the walsh transform towards seizure detection, Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation. pp. 115-120, 2007.

Puspita, J.W., Gunadharma, S., Indratno, S.W. and Soewono, E., Bayesian approach to identify spike and sharp waves in EEG data of epilepsy patients, Biomedical Signal Processing and Control, 35, pp. 63-69, 2017a.

Puspita, J.W., Jaya, A.I. and Gunadharma, S., Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network, AIP Conference Proceedings, 1825, p. 020018, 2017b.

Puspita, J.W., Soemarno, G., Jaya, A.I. and Soewono, E., Interictal epileptiform discharges (IEDs) classification in EEG data of epilepsy patients, Journal of Physics: IOP Conference Series, 943(1), p. 012030, 2017c.

Mihalovic, M., Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction, Economics & Sociology, 9(4), pp. 101-118, 2016.

Jain, S., Kuriakose, M., Discriminant analysis?simplified, International Journal of Contemporary Dental and Medical Reviews, 2019.

Mothersill, I.W., Cenusa, M., Bothman, J., Kronauer, H., Hilfiker, P. and Grunwald, T., A reappraisal of the value of interictal EEG findings in diagnosing epilepsy plus a critical review of controversial ?normal variants?, utilising long-term ambulatory EEG recordings, Schweizer Archiv fur Neurologie und Psychiatrie, 163(1), pp. 1-8, 2012.

Pedley, T.A., Mendiratta, A. and Walczak, T.S., Seizures and epilepsy, In: Ebersole, J.S., Pedley, T.A., editors, Current practice of clinical electroencephalography, Philadelphia: Lippincot William Wilkins, pp. 506-587, 2003.

Downloads

Published

2021-05-07

How to Cite

Gunadharma, S., Rizal, A., Ruslami, R., Achmad, T. H., Ju, S. S., Puspita, J. W., Indratno, S. W., & Soewono, E. (2021). Quantitative Measure to Differentiate Wicket Spike from Interictal Epileptiform Discharges. Communication in Biomathematical Sciences, 4(1), 14-22. https://doi.org/10.5614/cbms.2021.4.1.2

Issue

Section

Articles