A Game Dynamic Modeling Framework to Understand the Influence of Human Choice to Vaccinate or to Reduce Contact with Mosquitoes on Dengue Transmission Dynamics
DOI:
https://doi.org/10.5614/cbms.2021.4.1.6Keywords:
Dengue, Vaccination, game dynamics, contact with mosquitoes, reproduction numberAbstract
Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.
References
Achee, N. L., Gould, F., Perkins, T.A., Reiner, R.C., Morrison, A.C., Ritchie, S.A., Gubler, D.J., Teyssou, R., and Scott, T.W., A critical assessment of vector control for dengue prevention, PLOS Neglected Tropical Diseases, 9(5), pp. 1-19, 2015.
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.P., et al, The global distribution and burden of dengue, Nature, 496, pp. 1476-4687, 2013.
Duong, V., Lambrechts, L., Paul, R.E., Ly, S., Lay, R.S., Long, K.C., Huy, R., Tarantola, A., Scott, T.W., Sakuntabhai, A., and Buchy, P., Asymptomatic humans transmit dengue virus to mosquitoes, Proceedings of the National Academy of Sciences, 112(47), pp. 14688-14693, 2015.
World Health Organisation, Dengue and severe dengue Fact sheet No117, WHO, http://www.who.int/mediacentre/factsheets/fs117/en/, (February 2015), [accessed 03 March 2015].
Alvarado-Castro, V., Paredes-Solis, S., Nava-Aguilera, E., Morales-Perez, A., Alarcon-Morales, L., Balderas-Vargas, N.A., and Andersson, N., Assessing the effects of interventions for Aedes aegypti control: systematic review and meta-analysis of cluster randomised controlled trials, BMC Public Health, 17(1), pp. 384, 2017.
Ndii, M.Z., Hickson, R.I., Allingham, D., and Mercer, G.N., Modelling the transmission dynamics of dengue in the presence of Wolbachia, Mathematical Biosciences, 262, pp. 157-166, 2015.
Ndii, M.Z., Modelling the use of vaccine and Wolbachia on dengue transmission dynamics, Tropical Medicine and Infectious Disease, 5(2), pp. 78, 2020.
Ferguson, N.M., Hue Kien, D.T., Clapham, H., Aguas, R., Trung, V.T., Bich Chau, T.N., Popovici, J., Ryan, P.A., O?Neill, S.L., McGraw, E.A., Long, V.T., Dui, L.T., Nguyen, H.L., Vinh Chau, N.V., Wills, B., and Simmons, C.P., Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti, Science Translational Medicine, 7(279), pp. 279ra37, 2015.
Ogunlade, S.T., Meehan, M.T., Adekunle, A.I., Rojas, D.P., Adegboye, O.A., and McBryde, E.S., A review: Aedes-borne arboviral infections, controls and wolbachia-based strategies, Vaccines, 9(1), pp. 32, 2021.
Ndii, M.Z., Anggriani, N., Messakh, J.J., and Djahi, B.S., Estimating the reproduction number and designing the integrated strategies against dengue, Results in Physics, 27, pp. 104473, 2021.
Ferguson, N.M.,Hue Kien, D.T.,Clapham, H., Aguas, R., Trung, V.T.,Bich Chau, T.N., Popovici, J., Ryan, P.A., O?Neill, S.L., McGraw, E.A.,Long, V.T., Dui, L.T., Nguyen, H.L., Vinh Chau, N.V., Wills, B., and Simmons, C.P., Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti, Science Translational Medicine, 7(279), pp. 279ra37, 2015.
Aguiar, M., Stollenwerk, N., and Halstead, S.B., The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries, PLoS neglected tropical diseases, 10(12), pp. e0005179-e0005179, 2016.
Biswal, S., Borja-Tabora, C., L. Martinez Vargas, L., et al., Efficacy of a tetravalent dengue vaccine in healthy children aged 4?16 years: a randomised, placebo-controlled, phase 3 trial, the Lancet, 395(10234), pp. 1423-1433, 2020.
Villar, L., Dayan, G.H., Arredondo-Garc?a, J.L., Rivera, D.M., Cunha, R., Deseda, C., Reynales, H., Costa, M.S., Morales-Ram?rez, J.O., Carrasquilla, G., Rey, L.C., Dietze, R., Luz, K., Rivas, E., Miranda Montoya, M.C., Cortes Supelano, M., Zambrano, B., Langevin, E., Boaz, M., Tornieporth, N., Saville, M., and Noriega, F., Efficacy of a tetravalent dengue vaccine in children in latin America, New England Journal of Medicine, 372(2), pp. 113-123, 2015.
Biswal, S., Reynales, H., Saez-Llorens, X., Lopez, P., Borja-Tabora, C., Kosalaraksa, P., Sirivichayakul, C., Watanaveeradej, V., Rivera, L., Espinoza, F., Fernando, L., Dietze, R., Luz, K., Venancio da Cunha, R., Jimeno, J., Lopez-Medina, E., Borkowski, A., Brose, M., Rauscher, M., LeFevre, I., Bizjajeva, S., Bravo, L., and Wallace, D., Efficacy of a tetravalent dengue vaccine in healthy children and adolescents, New England Journal of Medicine, 381(21), pp. 2009-2019, 2019.
Nguyen-Tien, T., Probandari, A., and Ahmad, R.A., Barriers to engaging communities in a dengue vector control program: An implementation research in an urban area in Hanoi city, Vietnam, The American Journal of Tropical Medicine and Hygiene, 100(4), pp. 964-973, 2019.
Harapan, H., Anwar, S., Bustamam, A., Radiansyah, A., Angraini, P., Fasli, R., Salwiyadi, S., Bastian, R.A., Oktiviyari, A., Akmal, I., Iqbalamin, M., Adil, Henrizal, F., Darmayanti, D., Mahmuda, M., Mudatsir, M., Imrie, A., Sasmono, R.T., Kuch, U., Shkedy, Z., and Pramana S., Willingness to pay for a dengue vaccine and its associated determinants in indonesia: A community-based, cross-sectional survey in Aceh, Acta Tropica, 166, pp. 249-256, 2017.
Elsinga, J., van der Veen, H.T., Gerstenbluth, I., Burgerhof, J.G.M., Dijkstra, A., Grobusch, M.P., Tami, A., and Bailey, A., Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curacao, Parasites & Vectors, 10(1), pp. 434, 2017.
Ndii, M.Z., and Supriatna, A.K., Stochastic mathematical models in epidemiology, Information, 20, pp. 6185-6196, 2017.
Ndii, M.Z., Carnia, E., and Supriatna, A.K, Mathematical models for the spread of rumors: A review., Issues and Trends in Interdisciplinary Behavior and Social Science, F. Gaol, F. Hutagalung, and F. P. Chew, CRC Press, pp. 266-290, 2018.
Abidemi, A., and Aziz, N.A.B, Optimal control strategies for dengue fever spread in Johor, Malaysia, Computer Methods and Programs in Biomedicine, 196, pp. 105585, 2020.
Agusto, F., Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems, 113, pp. 155-164, 2013.
Shahrear, P., Rahman, S.M.S., and Nahid, M.M.H., Prediction and mathematical analysis of the outbreak of coronavirus (Covid-19) in Bangladesh, Results in Applied Mathematics, 10, pp. 100145, 2021.
Ndii, M.Z., Hadisoemarto, P., Agustian, D., and Supriatna, A.K., An analysis of Covid-19 transmission in Indonesia and Saudi Arabia, Communication in Biomathematical Sciences, 3(1), pp. 19-27, 2020.
Ndii, M.Z., Mage, A.R., Messakh, J.J., and Djahi, B.S., Optimal vaccination strategy for dengue transmission in Kupang city, Indonesia. Heliyon, 6(11), pp. e05345, 2020.
Khan, M.A., and Fatmawati, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7(1), pp. e06023, 2021.
Ndii, M.Z., Berkanis, F.R., Tambaru, D., Lobo, M., Ariyanto, and Djahi, B.S., Optimal control strategy for the effects of hard water consumption on kidney-related diseases, BMC Research Notes, 13(1), pp. 201, 2020.
Lenhart, S., and Workman, J., . Optimal Control Applied to Biological Models, Taylor& Francis, 2007.
Aldila, D., Ndii, M.Z., and Samiadji, B.M., Optimal control on covid-19 eradication program in Indonesia under the effect of community awareness, Mathematical Biosciences and Engineering, 17, pp. 6355-6389, 2020.
Aldila, D., Samiadji, B.M., Simorangkir, G.M., Khosnaw, S.H.A., and Shahzad, M. Impact of early detection and vaccination strategy in COVID-19 eradication program in Jakarta, Indonesia, BMC Research Notes, 14(1), pp. 132, 2021.
Wijaya, K.P., Aldila, D., Erandi, K.K.W.H., Fakhruddin, M., Amadi, M., and Ganegoda, N. Learning from panel data of dengue incidence and meteorological factors in Jakarta, Indonesia, Stochastic Environmental Research and Risk Assessment, 35(2), pp. 437-456, 2021.
Ganegoda, N.C., Wijaya, K.P., Amadi, M., Erandi, K.K.W.H., and Aldila, D., Interrelationship between daily COVID-19 cases and average temperature as well as relative humidity in Germany, Scientific Reports, 11(1), pp. 11302, 2021.
Bauch, C.T., Imitation dynamics predict vaccinating behaviour, Proceedings of the Royal Society B: Biological Sciences, 272(1573), pp. 1669-1675, 2005.
Bhattacharyya, S., and Bauch, C.T., A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases, Journal of Theoretical Biology, 267(3), pp. 276-282, 2010.
Ngonghala, C.N., Goel, P., Kutor, D., and Bhattacharyya, S., Human choice to self-isolate in the face of the Covid-19 pandemic: A game dynamic modelling approach, Journal of Theoretical Biology, 521, pp. 110692, 2021.
Chang, S.L., Piraveenan, M., Pattison, P., and Prokopenko, M., Game theoretic modelling of infectious disease dynamics and intervention methods: a review, Journal of Biological Dynamics, 14(1), pp. 57-89, 2020.
Deka, A., and Bhattacharyya, S., Game dynamic model of optimal budget allocation under individual vaccination choice, Journal of Theoretical Biology, 470, pp. 108-118, 2019.
Poletti, P., Ajelli, M., and Merler, S., Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic, Mathematical Biosciences, 238(2), pp. 80-89, 2012.
Aldila, D., and Angelina, M., Optimal control problem and backward bifurcation on Malaria transmission with vector bias, Heliyon, 7(4), pp. e06824, 2021.
Miller Neilan, R.L., Schaefer, E., Gaff, H., Fister, K.R., and Lenhart, S., Modeling Optimal Intervention Strategies for Cholera, Bulletin of Mathematical Biology, 72(8), pp. 2004-2018, 2010.
Diekmann, O., Heesterbeek, J.A.P., and Roberts, M.G., The construction of next?generation matrices for compartmental epidemic models, Journal of the Royal Society Interface, 7, pp. 873-885, 2010.
Chowell, G., Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infectious Disease Modelling, 2(3), pp. 379-398, 2017.
Matheus, S., Deparis, X., Labeau, B., Lelarge, J., Morvan, J., and Dussart, P., Discrimination between primary and secondary dengue virus infection by an immunoglobulin G avidity test using a single acute-phase serum sample, Journal of Clinical Microbiology, 43(6), pp. 2793-2797, 2005.
Gubler, D.J., Dengue and dengue hemorrhagic fever, Clinical Microbiology Reviews, 11(3), pp. 480-496, 1998.
Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., and Wanderley, D.M.V., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, 137, pp. 1188-1202, 2009.
BPS NTT, Data Nusa Tenggara Timur, http://fs.fish.govt.nz/Page.aspx?pk=7&sc=SUR, (Accessed 30 April 2020).
Sepulveda, L.S., and Vasilieva, O., Optimal control approach to dengue reduction and prevention in Cali, Colombia, Mathematical Methods in the Applied Sciences, 39(18), pp. 5475-5496, 2016.