Preparation and Characterization of Biopolymer Electrolyte Membranes Based on LiClO4-Complexed Methyl Cellulose as Lithium-ion Battery Separator

Authors

  • Sun Theo Constan Lotebulo Ndruru Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132,
  • Deana Wahyuningrum Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132,
  • Bunbun Bundjali Institut Teknologi Bandung
  • I Made Arcana Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132,

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.3

Keywords:

biopolymer electrolyte, lithium-ion batteries, methyl cellulose, lithium perchlorate, separator

Abstract

The polymer electrolyte membrane is a main component of lithium-ion batteries (LiBs), serving as separator and electrolyte. In this work, we prepared biopolymer electrolyte (BPE) membranes of lithium perchlorate (LiClO4)-complexed methyl cellulose (MC). Methyl cellulose (MC), a cellulose derivative, has attractive properties for use as biopolymer electrolyte. The bulkier anion size of lithium salt (LiClO4) significantly enhances the performance of biopolymer electrolyte (BPE) membranes. The fabricated biopolymer electrolyte (BPE) membranes were characterized by FTIR, EIS, tensile tester, XRD and TGA. Biopolymer electrolyte membranes with various weight percentages of LiClO4 salt (0%, 5%, 10%, 15%, and 20%) were prepared using a simple solution casting technique. Incorporation of 10% weight of LiClO4 into the MC-based host polymer was selected as optimum condition, because this yielded good conductivity (3.66 x 10-5 S cm-1), good mechanical properties (tensile strength 35.97 MPa and elongation at break 14.47%), good thermal stability (208.4 to 338.2 C) as well as ease of preparation and low cost of production. Based on its characteristics it can be stated that the 10% LiClO4-complexed MC membrane meets the requirements as a candidate separator for lithium-ion battery application.

Downloads

Download data is not yet available.

References

Kreuer, K.D., Ion Conducting Membranes for Fuel Cells and Other Electrochemical Devices, Chemistry of Materials, 26, pp. 361-380, 2014.

Farran, A., Cai, C.M., Sandoval, Xu, Y., Liu, J., Hernaiz, M.J. & Linhardt, R.J., Green Solvents in Carbohydrate Chemistry: from Raw Materials to Fine Chemicals, Chemical Reviews, 115(14), pp. 6811-6853, 2015.

Trace, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A., Hassan, T.M. & Haafiz, M.K.M., Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application-A Review, International Journal of Biological Macromolecules, 93, pp. 789-804, 2016.

Qiu, L., Shao, Z., Wang, D., Wang, F., Wang, W. & Wang, J., Novel Polymer Li-Ion Binder Carboxymethyl Cellulose Derivative Enhanced Electrochemical Performance for Li-Ion Batteries, Carbohydrate Polymers, 112, pp. 532-538, 2014.

Kim, J.Y. & Lim, D.Y., Plasma-Modified Polyethylene Separator Membrane for Lithium-ion Polymer Battery, Electrochemica Acta, 54, pp. 3714-3719, 2009.

Variant Market Research, Global Lithium-Ion Battery Market Report, https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/lithium-ion-battery-market, (25 March 2019).

Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., Cui, G. & Chen, L., All Solid-State Polymer Electrolytes for High-Performance Lithium-ion Batteries, Energy Storage Materials, 5, pp. 139-164, 2016.

Noto, V.D., Lavina, S., Giffin, G.A., Negro, E. & Scrosati, B., Polymer Electrolytes: Present, Past and Future, Electrochemica Acta, 57, pp. 4-13, 2011.

Armand, M.B., Bruce, P.G, Forsyth, M., Scrosati, B. & Wieczorek, W., Polymer Electrolytes, John Wiley & Sons, Ltd, 2011.

Patil, A., Patil V., Shin, D.W., Choi, J.W., Paik, D.S. & Yoon, S.J., Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries, Materials Research Bulletin, 43, pp. 1913-1942, 2008.

Liew, C.W. & Ramesh, S., Electrical, Structural, Thermal and Electrochemical Properties of Corn Starch-Based Biopolymer Electrolytes, Carbohydrate Polymers, 124, pp. 222-228, 2015.

Xiong, M., Tang, H., Wang, Y. & Pan, M., Ethylcellulose-Coated Polyolefin Separators for Lithium-Ion Batteries with Improved Safety Performance, Carbohydrate Polymers, 101, pp. 1140-1146, 2014.

Song, M.K, Kim, Y.T., Cho, J.Y., Cho, B.W., Popov, B.N. & Rhee, H.W., Composite Polymer Electrolytes Reinforced by Non-Woven Fabrics, Journal of power sources, 125, pp. 10-16, 2004.

Rajendran, S., Mahendran, O. & Kannan, R., Ionic Conductivity Studies in Composite Solid Polymer Electrolytes Based on Methylmethacrylate, Journal of Physics and Chemistry of Solids, 63, pp. 303-307, 2002.

Chen-Yang, Y.W., Chen, H.C., Lin, F.J. & Chen, C.C., Polyacrylonitrile Electrolytes: A Novel High-Conductivity Composite Polymer Electrolyte Based on PAN, LiClO4 and -Al2O3, Solid State Ionics, 150, pp. 327-335, 2002.

Li, M.X., Wang, X.W., Yang, Y.Q., Chang, Z., Wu, Y.P. & Holze, R., A Dense Cellulose-Based Membrane as a Renewable Host for Gel Polymer Electrolyte of Lithium Ion Batteries, Journal of Membrane Science, 476, pp. 112-118, 2015.

Rudhziah, S., Rani, M.S.A., Ahmad, A., Mohamed, N.S. & Kaddami, H., Potential of Blend of Kappa-Carrageenan and Cellulose Derivative for Green Polymer Electrolyte Application, Industrial Crops and Products, 72, pp. 133-141, 2015.

Samsudin, A.S., Kuan, E.C.H. & Isa, M.I.N., Investigation of the Potential of Proton-Conducting Biopolymer Electrolytes-Based Methyl Cellulose-Gycolic Acid, International Journal of Polymer Analysis and Characterization, 16(7), pp. 477-485, 2011.

Shaari, N., Enhanced Mechanical Flexibility and Performance of Sodium Alginate Polymer Electrolyte Bio-Membrane for Application in Direct Methanol Fuel Cell, Journal of Applied Polymer Science, 135(37), pp. 46666, 2018.

Shaari, N. & Kamarudin, S.K., Chitosan and Alginate Types of Bio-Membrane in Fuel Cell Application: An Overview, Journal of Power Sources, 289, pp. 71-80, 2015.

Shaari, N. & Kamarudin, S.K., Recent Advances in Additive-Enhanced Polymer Electrolyte Membrane Properties in Fuel Cell Applications: An Overview, International Journal of Energy Research, 43(7), pp. 2756-2794, 2019.

Shaari, N., Enhanced Proton Conductivity and Methanol Permeability Reduction Via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-Membrane, Nanoscale Research Letters, 13(1), pp. 82, 2018.

Monisha, S., Mathavan, T., Selvasekarapandian, S., Benial, A.M.F., Aristatil, G., Mani, N., Premalatha, M. & Pandi, D.V., Investigation of Biopolymer Electrolyte Based On Cellulose Acetate-Ammonium Nitrate for Potential Use in Electrochemica, Carbohydrate Polymers, 157, pp. 38-47, 2017.

Navaratnam, S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W.J. & Arof A.K., Transport Mechanism Studies of Chitosan Electrolyte Systems, Electrochimica Acta, 175, pp. 68-73, 2015.

Polu, A. & Rhee, H.W., Ionic Liquid Doped PEO-Based Solid Polymer Electrolytes for Lithium-ion Polymer Batteries, International Journal of Hydrogen Energy, 42, pp. 7212-7219, 2017.

Kumar, A., Negi, Y.S., Bhardwaj, N.K. & Choudhary, V., Synthesis and Characterization of Methylcellulose/PVA Based Porous Composite, Carbohydrate Polymers, 88, pp. 1363-1373, 2012.

Kim, H.S., Choi, G.Y., Moon, S.I. & Kim, S.P., Electrochemical Properties of Li Ion Polymer Battery with Gel Polymer Electrolyte Based on Polyurethane, Journal of Applied Electrochemistry, 33, pp. 491-496, 2003.

Mobarak, N.N., Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A., Carboxymethyl Carageenan Based Biopolymer Electrolytes, Electrochemica Acta, 175, pp. 224-231, 2015.

Levdik, I. Y., Petropavlovskii, G.A. & Vasil'eva, G.S., IR Study of Analytical and Structural Characteristics of Low-Substituted Methylcellulose Films, Zhurnal Prikladnoi Spectroskopii, 3(4), pp. 363-367, 1965.

Ndruru, S.T.C.L., Wahyuningrum, D., Bundjali, B. & Arcana, I.M., Green Simple Microwave-assisted Extraction (MAE) of Cellulose from Theobroma Cacao L. (TCL) Husk, IOP Conference Series: Materials Science and Engineering, 541(1), 2019.

Liebeck, B.M., Hidalgo, N., Roth, G., Popescu, C. & Boker, A., Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes, Polymers, 9, pp. 91, 2017.

Miyamoto, T., Takahashi, S., Ito, H., Inagaki, H. & Noishiki, Y., Tissue Biocompatibility of Cellulose and Its Derivatives, Journal of Biomedical Materials Research, 23, pp. 125-133, 1989.

Crini, G., Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment, Journal of Polymer Science, 30, pp. 38-70, 2005.

Bourtoom, T., Edible Films and Coatings: Characteristics and Properties, International Food Research Journal, 8(15), pp. 237-248, 2008.

Garcia, M.A. Pinotti, A. & Zaritzky, N., Electrically Treated Composite Films Based On Chitosan and Methylcellulose Blends, Food Hydrocolloids, 23, pp. 722-729, 2009.

Shuhaimi, N.E.A., Alias, N.A., Kufian, M.Z., Majid, S.R. & Arof, A.K., Characteristics of Methyl Cellulose-NH4NO3-PEG Electrolyte and Application in Fuel Cells, Journal of Solid State Electrochemistry, 14, pp. 2153-2159, 2010.

Orasugh, J.T., Saha, N.R., Sarkar, G., Rana, D., Mishra, R., Mondal, D., Ghosh, S.K. & Chattopadhyay, D., Synthesis of Methylcellulose/Cellulose Nano-Crystals Nanocomposites: Material Properties and Study of Sustained Release of Ketorolactromethamine, Carbohydrate Polymer, 188, pp. 168-180, 2018.

Saha, N.R., Sarkar, G., Roy I., Rana, D., Bhattacharyya, A., Mukhopadhyay, A. & Chattopadhyay, D., Studies on Methylcellulose/ Pectin/ Montmorillonite Nanocomposite Films and Their Application Possibilities, Carbohydrate polymers, 136, pp. 1218-1227, 2016.

Ye, D., Montane, D. & Farriol, X., Preparation and Characterization of Methylcelluloses from Mischantus Sinensis, Carbohydrate Polymer, 6, pp. 446-454, 2005.

Park, J.S. & Ruckestein, E., Viscoelastic Properties of Plasticized Methylcellulose and Chemically Crosslinked Methylcellulose, Carbohydrate Polymer, 46, pp. 373-381, 2001.

Lin, S.Y., Wang, S.L., Wei, Y.S. & Li, M.J., Temperature Effect On Water Desorption from Methylcellulose Films Studied by Thermal FT-IR Microspectroscopy, Surface Science, 601, pp. 781-785, 2007.

Luccia, B.H.D & Kunkel, M.E., In Vitro Availability of Calcium from Sources of Cellulose, Methylcellulose and Psyllium, Food Chemistry, 77, pp. 139-146, 2002.

Ndruru, S.T.C.L., Wahyuningrum, D., Bundjali, B. & Arcana, I.M., Green Synthesis of [EMIm]Ac Ionic Liquid for Plasticizing MC-based Biopolymer Electrolyte Membranes, Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), pp. 345-357, 2019.

Nagel, M.C.V., Koschella, A., Voiges, K., Mischnick, P. & Heinze, T., Homogeneous Methylation of Wood Pulp Cellulose Dissolved in LiOH/ Urea/ H2O, European Polymer Journal, 46, pp. 1726-1735, 2010.

Aziz, N.A.N., Idris, N.K. & Isa, M.I.N., Solid Polymer Electrolytes Based on Methylcellulose: FTIR and Ionic Conductivity Studies, International Journal of Polymer Analysis and Characterization, 15, pp. 319-327, 2011.

Porchelvi, S., Kannan, R., Palani, P.B., Abidin, K.S. & Rajashabala, S., High Conductive Proton Exchange Membrane (SPEEK/MMT) and Its Characterization, Materials Research Innovations, 23(1), pp. 33-38, 2017.

Liao, H., Hong, H., Zhang, H. & Li, Z., Preparation of Hydrophilic Polyethylene/Methylcellulose Blend Microporous Membranes for Separator of Lithium-Ion Batteries, Journal of Membrane Science, 498, pp. 147-157, 2016.

Gustav, Ek., A Study of Poly (Vinyl Alcohol) as a Solid Polymer Electrolyte for Lithium Ion Batteries, Final Project, Uppsala Universitet, 2016.

Kumar, Y., Hashmin, S.A. & Pandey, G.P., Lithium Ion Transport and Ion-Polymer Interaction in PEO Based Polymer Electrolyte Plasticized with Ionic Liquid, Solid State Ionics, 201, pp. 73-80, 2011.

Chaurasia, S.K., Singh, R.K. & Chandra, S., Dielectric Relaxation and Conductivity Studies on (PEO-LiClO4) Polymer Electrolyte with Added Ionic Liquid [BMIM][PF6]: Evidence of Ion-Ion Interaction, Polymer Physics, 49, pp. 291-300, 2011.

Fahmi, E.M., Ahmad, A., Nazeri, N.M.M., Hamzah, H., Razali, H. & Rahman, M.Y.A., Poly (Ethylene Oxide)-based Composite Polymer Electrolyte, International Journal of Electrochemica Science, 7, pp. 5798-5804, 2012.

Pagot, G., Bertasi, F., Vezzu, K., Nawn, G., Pace, G., Nale, A. & Noto, V.D., Correlation Between Properties and Conductivity Mechanism in Poly (Vinyl Alcohol)-based Lithium Solid Electrolytes, Solid State Ionics, 320, 177-185, 2018.

Lid, D.R., CRC Handbook of Chemistry and Physics, New York: Internet Version, <http://www.hbcpnetbase.com>, CRC Press, Boca, 2005.

Kuo, C.W., Huang, C.W., Chen, B.K., Li, W.B. & Chen, P.R., Enhanced Ionic Conductivity in PAN-PEGME-LiClO4-PC Composite Polymer, International Journal of Electrochemica Science, 2013, pp. 3834-3850, 2013.

Rajendran, S., Mahendran, O. & Kannan, R., Ionic Conductivity Studies in Composite Solid Polymer Electrolytes Based on Methylmethacrylate, Journal of Physics and Chemistry of Solids, 63, pp. 303-307, 2002.

Hirankumar G., Selvasekarapandian S., Bhuvaneswari, M.S., Baskaran R., & Vijayakumar M., AC Impedance Studies on Proton Conducting Polymer Electrolyte Complexes (PVA+CH3COONH4), Ionics, 10, pp. 135-138, 2004.

Lvovich, V., Impedance Spectroscopy: Application to Electrochemical and Dielectric Phenomena, John Wiley & Sons, Inc, Hoboken, 2012.

Meyer, W.H., Polymer Electrolytes for Lithium-Ion Batteries, Advanced Materials, 10(6), pp. 439, 1998.

Meenatchi, B., Renuga, V. & Manikan, A., Cellulose Dissolution and Regeneration Using Various Imidazolium-based Protic Ionic Liquids, Journal of Molecular Liquids, 238, pp. 582-588, 2017.

Liebeck, B.M., Hidalgo, N., Roth, G., Popescu, C. & Boker, A., Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes, Polymers, 9, pp. 91, 2017.

Allcock, H.R. & Lampe, F.W., Contemporary Polymer Chemistry, Singapore: Prentice Hall, Simon & Schhuster (Asia) Pte Ltd, 1992.

Liao, H., Hong, H., Zhang, H. & Li, Z., Preparation of Hydrophilic Polyethylene/Methylcellulose Blend Microsporous Membranes for Separator of Lithium-Ion Batteries, Journal of Membrane Science, 498, pp. 147-157, 2016.

Quiroz, M.J.T., Lecot, J., Bertola, N. & Pinotti, A., Stability of Methylcellulose-Based Films after Being Subjected to Different Conservation and Processing Temperatures, Materials Science and Engineering. C, 33, pp. 2918-2925, 2013.

Donhowe, I.G. & Fennema, O., The Effects of Solution Composition and Drying Temperature on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Film, Journal Food Processing and Preservation, 17, pp. 231-246, 1993.

Vieira, J.G., Filho, G.R., Meireles, G.d.S., Faria, F.A.C., Gomide, D.D., Pasquini, D., Synthesis and Characterization of Methylcellulose from Cellulose Extracted from Mango Seeds for Use as a Mortar Additive, Journal of Polimeros, 22(1), pp. 80-87, 2012.

Kumar, A., Negi, Y.S., Bharwaj, N.K. & Choudhary, V., Synthesis and Characterization of MC/PVA-based Porous Composite, Carbohydrate Polymers, 88, pp. 1364-1372, 2012.

Filho, G.R., Assuncao, R.M.N.d., Vieira, J.G., Meireles, C.d.S., Cerqueira, D.A., Barud, H.d.S, Ribeiro, S.J.L. & Messaddeq, Y., Characterization of Methylcellulose Produced from Sugarcane Bagasse Cellulose: Crystallinity and Thermal Properties, Polymer Degradation and Stability, 92, pp. 205-210, 2007.

Tavera Quiroz, M.J., Lecot, J., Bertola, N., & Pinotti, A., Stability of Methylcellulose-Based Films after Being Subjected to Different Conservation and Processing Temperatures, Material Science Engineering. C, 33, 2918-2925, 2013.

Hodge, R. M., Edward, G. H., & Simon, G. P., Water Absorption and States of Water in Semicrystalline Poly (Vinyl Alcohol) Films, Polymer, 37, pp. 1371-1376, 1996.

Hongting, P. U., Luo, M. & Yang, Z., Transparent and Anhydrous Proton Conductors Based On PVA/Imidazole/NH4H2PO4 Composites, European Polymer Journal, 43, pp. 5076-5083, 2007.

Aziz, S.B., Hamsan, M.H., Abdullah, R.M., & Kadir, M.E.Z., A Promosing Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance & Energy Density, Molecules, 24 (2503), pp. 1-24, 2019.

Gupta, H., Kataria, S., Balo, L., Singh, V.K. & Singh, S.K., Electrochemical Study of Ionic Liquid Based Polymer Electrolyte with Graphene Oxide Coated LiFePO4 Cathode for Li Battery, Solid State Ionics, 320, pp. 186-192, 2018.

El Idrissi, A., El Barkany, S., Amhamdi, H. & Maaroufi, A.K., Synthesis and Characterization of New Cellulose Derivative Films Based on the Hydroxyethyl Cellulose Prepared from Esparto "Stipa tenacissima' Cellulose of Eastern Morocco. II. Esterification with Acyl Chlorides in a Homogeneous Medium, Journal of Applied Polymer Science, 127(5), pp. 3633-3644, 2013.

Downloads

Published

2020-02-28

How to Cite

Ndruru, S. T. C. L., Wahyuningrum, D., Bundjali, B., & Arcana, I. M. (2020). Preparation and Characterization of Biopolymer Electrolyte Membranes Based on LiClO4-Complexed Methyl Cellulose as Lithium-ion Battery Separator. Journal of Engineering and Technological Sciences, 52(1), 28-50. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.3

Issue

Section

Articles