Lessons Learned in Interfacial Tension Prediction Using a Mixture of Sulfonate- and Ethoxylate-based Surfactants in a Waxy Oil-brine System

Authors

  • Rani Kurnia Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
  • Dian Asfriany Nurfalah Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
  • Deana Wahyuningrum Chemistry Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
  • Taufan Marhaendrajana Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
  • Utjok W.R Siagian Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2023.55.6.1

Keywords:

hydrophilic-lipophilic deviation, interfacial tension, surfactant, surfactant mixture, waxy oil

Abstract

The chemical-enhanced oil recovery (CEOR) method is applied to change reservoir rock or fluid characteristics by injecting alkaline, surfactant, and polymer or a combination of two or three of the compounds. Surfactant flooding improves oil recovery by reducing the interfacial tension between oil and water. Selecting reservoir surfactants, especially microemulsions, requires careful screening. This study predicted waxy oil system interfacial tension using surfactant mixtures at below- and above-optimum salinity. To predict the interfacial tension, microemulsion types, HLB, ideal salinity, and HLD were used. The study predicted oil-surfactant-water interfacial tension using SAE, FEO, and their mixtures. We improved the Huh equation by adding a fitting parameter, ?, to accommodate the transition from type III to type II microemulsions as salinity increases. With increasing salinity, anionic surfactant?s hydrophilic-hydrophobic interactions change, affecting the values and surfactant layer thickness. This study improved hydrophilic-lipophilic deviation (HLDN) by establishing a fixed interval for nonionic surfactants. Van der Waals attraction, values and interface surfactant layer thickness are connected, reflecting the fact that lower values reduce interfacial tension better. This study also found that surfactant packing at the oil-water interface increases the order of the oil-solution ratio and the microemulsion values with polarity.

Downloads

Download data is not yet available.

Author Biographies

Rani Kurnia, Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

 

 

 

 

 

Dian Asfriany Nurfalah, Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

 

 

 

Deana Wahyuningrum, Chemistry Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

 

 

Taufan Marhaendrajana, Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

 

 

Utjok W.R Siagian, Petroleum Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

 

 

References

Sheng, J.J., Surfactant Flooding, in Modern Chemical Enhanced Oil Recovery, ed.10., Elsevier Inc., pp. 239-335, 2011. doi: 10.1016/b978-1-85617-745-0.00007-3

Davies, J., A Quantitative Kinetic Theory of Emulsion Type. I. Physical Chemistry of The Emulsifying Agent, in 2nd International Congress Surface Activity, pp. 426-438, 1957.

Griffin, W.C., Hydrophile?lipophile Balance and Cloud Points of Nonionic Surfactants, J. Pharm. Sci., 58(12), pp. 1443-1449, 1969. doi: 10.1002/jps.2600581203.

Griffin, W.C., Classification of Surface-Active Agents by HLB, J. Soc. Cosmet. Chem., pp. 311-326, 1949.

Huh, C., Interfacial Tensions and Solubilizing Ability of a Microemulsion Phase that Coexists with Oil and Brine, J. Colloid Interface Sci., 71(2), pp. 408?426, 1979, doi: 10.1016/0021-9797(79)90249-2.

Huh, C., Equilibrium of a Microemulsion That Coexists with Oil or Brine, Soc. Pet. Eng. J., 23(5), pp. 829-847, 1983. doi: 10.2118/10728-PA.

Salager, J., Microemulsions, in Handbook of Detergents, Part A: Properties, G. Broze, Ed. Marcel Dekker, Inc, p. 253, 1999.

Salager, J., Morgan, J.C., Schechter, R.S., Wade, W.H. & Vasquez, E., Optimum Formulation of Surfactant/Water/Oil Systems for Minimum Interfacial Tension or Phase Behavior, Soc. Pet. Eng. J., 19(02), pp. 107-115, 1979, doi: 10.2118/7054-pa.

Robbins, M.L., Theory for the Phase Behavior of Microemulsions BT- Micellization, Solubilization, and Microemulsions: Volume 2, K. L. Mittal, Springer US, pp. 713-754, 1977. doi: 10.1007/978-1-4613-4157-4_14.

Winsor, P.A., Solvent Properties of Amphiphilic Compounds, Butterworths Scientific Publications, London, 207 S. mit zahlr. Tabb. u. Abb. Preis 40.?. Fette, Seifen, Anstrichm., 58: pp. 1103-1104, 1956. doi.org/10.1002/lipi.19560581222

Winsor, P.A., Hydrotropy, Solubilisation and Related Emulsification Processes. Transactions of the Faraday, 44, pp. 376-398, 1948. doi: 10.1039/tf9484400376.

Sheng, J.J., Modern Chemical Enhanced Oil Recovery: Theory and Practice, Gulf Professional Publishing, 2018.

Gao, B. & Sharma, M.M., A New Family of Anionic Surfactants for EOR Applications, SPE Annu. Tech. Conf. Exhib, October 8, 2012. doi:10.2118/159700-MS.

Gao, B. & Sharma, M.M., A New Family of Anionic Surfactants for EOR Applications, pp. 8-10, 2012. doi: 10.2118/159700-ms.

Solairaj, S., Christopher, B., Jun, L, Do Hoon, K., Upali, W. & Gary A., P. New Correlation to Predict the Optimum Surfactant Structure for EOR. SPE Improv. Oil Recover. Symp., pp. 2-11, April 14, 2012. https://doi.org/10.2118/154262-MS.

Salager, J.L., Bourrel, M., Schechter, R.S., & Wade, W.H., Mixing Rules for Optimum Phase-Behavior Formulations of Surfactant/Oil/Water Systems. Soc. Pet. Eng. J., 19(05), pp. 271-278, 2007. doi: 10.2118/7584-pa.

Antonio, B.M.Jr., Characteristic Curvature Evaluation of Anionic Surfactants for Enhanced Oil Recovery Applications, Proc. Natl. Conf. Undergrad. Reseach, 9, April 16-18, 2015.

Santacesaria, E., Gelosa, D., Di Serio, M. & Tesser, R., Thermal Stability of Nonionic Polyoxyalkylene Surfactants, Journal of Applied Polymer Science, 42(7), pp. 2053-2061, 1991. doi: 10.1002/app.1991.070420733.

Puerto, M.C. & Gale, W.W., Estimation of Optimal Salinity and Solubilization Parameters for Alkylorthoxylene Sulfonate Mixtures. Society of Petroleum Engineers Journal, 17(03), pp. 193-200, 1977. doi: 10.2118/5814-pa.

Rosen, M.J., Wang, H., Shen, P. & Zhu, Y., Ultralow Interfacial Tension for Enhanced Oil Recovery at Very Low Surfactant Concentrations. Langmuir, 21(9), pp. 3749-3756. 2005. doi: 10.1021/la0400959.

Barnes, J.R., Groen, K., Dubey, S., Reznik, C., Buijse, M.A., et al., Controlled Hydrophobe Branching to Match Surfactant to Crude Oil Composition for Chemical EOR. Proceedings - SPE Symposium on Improved Oil Recovery, 2012. doi: 10.2118/154084-ms.

Ling, K. & He, J., A New Correlation to Calculate Oil-Water Interfacial Tension, Soc. Pet. Eng. - Kuwait Int. Pet. Conf. Exhib. 2012, KIPCE 2012 People Innov. Technol. to Unleash Challenging Hydrocarb. Resour., pp. 522-530, December, 2012. doi: 10.2118/163328-ms.

Levitt, D.B., Jackson, A.C., Heinson, C., Britton, L.N., Malik, T., et al. Identification and Evaluation of High-Performance EOR Surfactants, SPE Reservoir Evaluation & Engineering, 12(02), pp. 243-253, 2009. doi: 10.2118/100089-PA.

Salager, J.-L., Marquez, N., Graciaa, A. & Lachaise, J., Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion?Oil?Water Systems: Influence of Temperature and Relation between Partitioning Coefficient and Physicochemical Formulation, Langmuir, 16(13), pp. 5534-5539, 2000. doi: 10.1021/la9905517.

Salager, J.-L, Ant, R., J. Bull, Forgiarini, A. & Marquez, R., Multivariable Formulation of Surfactant-Oil-Water Systems, Encyclopedia MDPI, https://encyclopedia.pub/entry/1772 (17 April 2021).

Bourrel, M. & Schechter, R., Microemulsions and Related Systems: Formulation, Solvency, and Physical Properties, New York: M. Dekker, 2010.

Witthayapanyanon, A., Acosta, E.J., Harwell, J.H., & Sabatini, D.A., Formulation of Ultralow Interfacial Tension Systems Using Extended Surfactants. Journal of Surfactants and Detergents, 9(4), pp. 331-339, 2006. doi: 10.1007/s11743-006-5011-2.

Witthayapanyanon, A., Harwell, J. & Sabatini, D., Hydrophilic?Lipophilic Deviation (HLD) Method for Characterizing Conventional and Extended Surfactants, Journal of Colloid and Interface Science, 325(1), pp. 259-266, 2008. doi: 10.1016/j.jcis.2008.05.061.

Jin, L., Budhathoki, M., Jamili, A., Li, Z., Luo, H., Ben Shiau, B., Delshad, M. & Harwell, J.H., Predicting Microemulsion Phase Behavior Using Physics based HLD-NAC Equation of State for Surfactant Flooding, Journal of Petroleum Science and Engineering, 151, pp. 213-223, 2017. doi: 10.1016/j.petrol.2016.12.035

Torrealba, V.A. & Johns, R.T., Microemulsion Phase-Behavior Equation-of-State Model Using Empirical Trends in Chemical Potentials. SPE Journal, 23(03), pp. 819-830, 2018. doi: 10.2118/184555-pa.

Acosta, E. & Sundar, S., How to Formulate Biobased Surfactants through the HLD-NAC Model, Biobased Surfactants, pp. 471-510, 2019. doi: 10.1016/b978-0-12-812705-6.00015-0.

Kurnia, R., Wahyuningrum, D., Abdassah, D. & Marhaendrajana, T., Correlation between Phase Behavior and Interfacial Tension for Mixtures of Amphoteric and Nonionic Surfactant with Waxy Oil, Journal of Engineering and Technological Sciences, 53(5), 210501, 2021. doi: 10.5614/j.eng.technol.sci.2021.53.5.1.

Barakat, Y., Fortney, L.N., Schechter, R.S., Wade, W.H., Yiv, S.H. & Graciaa, A., Criteria for Structuring Surfactants to Maximize Solubilization of Oil and Water, Journal of Colloid and Interface Science, 92(2), pp. 561-574, 1983. doi: 10.1016/0021-9797(83)90177-7.

Marhaendrajana, T., Kurnia, R., Wahyuningrum, D. & Fauzi, I., A Novel Sulfonated Alkyl Ester Surfactant to Reduce Interfacial Tensions in a Wide Range Salinity with Monovalent and Divalent Ions, Modern Applied Science, 10(1), 93, 2015. doi: 10.5539/mas.v10n1p93.

Marhaendrajana, T., Wahyuningrum, D., Kurnia, R. & Buchari, A., Alkyl Ester Sulfonate-Based Surfactant to Reduce Oil-Water Interfacial Tension in Enhanced Oil Recovery Applications from Reservoirs, IDP000078333, 2017.

Marhaendrajana, T., Kurnia, R., Wahyuningrum, D. & Abdassah, D., Composition of Alkyl Ester Sulfonate Surfactant with Polyethylene Glycol Oleate Ester Surfactant for Reducing the Interfacial Tension between Waxy Oil and Water, P00201809114, 2018.

Marhaendrajana, T., Kurnia, R., Irfana, D., Abdassah, D. & Wahyuningrum, D., Study to Improve an Amphoteric Sulfonate Alkyl Ester Surfactant by Mixing with Nonionic Surfactant to Reduce Brine?Waxy Oil Interfacial Tension and to Increase Oil Recovery in Sandstone Reservoir: T-KS Field, Indonesia, Journal of Petroleum Exploration and Production Technology, 9(1), pp. 675-683, 2018. doi: 10.1007/s13202-018-0503-y.

Kurnia, R., Development of Sulfonated Alkyl Ester and Its Injection Methods to Improve Oil Recovery in Sandstone Reservoir, Institut Teknologi Bandung, 2020.

Jin, L., Budhathoki, M., Jamili, A., Li, Z., Luo, H., Delshad, M., Shiau, B. & Harwell, J. H., Predicting Microemulsion Phase Behavior for Surfactant Flooding, SPE - DOE Improv. Oil Recover. Symp. Proc, January, 2016. doi: 10.2118/179701-MS.

Torrealba, V.A. & Johns, R.T, Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures, Langmuir, 33(47), pp. 13604-13614, 2017, https://doi.org/10.1021/acs.langmuir.7b03372.

Ghosh, S. & Johns, R.T., Dimensionless Equation of State to Predict Microemulsion Phase Behavior. Langmuir, 32(35), pp. 8969-8979, 2016. Doi: 10.1021/acs.langmuir.6b02666.

Magzymov, D., Qiao, C. & Johns, R.T., Impact of Surfactant Mixtures on Microemulsion Phase Behavior, Soc. Pet. Eng., pp. 26-28, 2016, doi: 10.2118/181651-ms.

Cayias, J., Schechter, R. & Wade, W., Modeling Crude Oils for Low Interfacial Tension. Society of Petroleum Engineers Journal, 16(06), pp. 351-357, 1976. doi: 10.2118/5813-pa.

Roshanfekr, M. & Johns, R., Prediction of Optimum Salinity and Solubilization Ratio for Microemulsion Phase Behavior with Live Crude at Reservoir Pressure, Fluid Phase Equilibria, 304(1-2), pp. 52-60, 2011. doi: 10.1016/j.fluid.2011.02.004.

Wan, W., Zhao, J., Harwell, J.H. & Shiau, B.J., Characterization of Crude Oil Equivalent Alkane Carbon Number (EACN) for Surfactant Flooding Design, Journal of Dispersion Science and Technology, 37(2), pp. 280-287, 2014. doi: 10.1080/01932691.2014.

Salager, J.L., Ant, R., Bull, J., Forgiarini, A. & Marquez, R., How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics, 7(3), 57, 2020. doi: 10.3390/cosmetics7030057.

Downloads

Published

2023-12-31

How to Cite

Kurnia, R., Asfriany Nurfalah, D., Wahyuningrum, D., Marhaendrajana, T., & W.R Siagian, U. (2023). Lessons Learned in Interfacial Tension Prediction Using a Mixture of Sulfonate- and Ethoxylate-based Surfactants in a Waxy Oil-brine System. Journal of Engineering and Technological Sciences, 55(6), 627-638. https://doi.org/10.5614/j.eng.technol.sci.2023.55.6.1

Issue

Section

Articles

Most read articles by the same author(s)