Microwave-assisted Synthesis of Functionalized Multiwalled Carbon Nanotube?Titanium Dioxide Hybrid Structure and Photodegradation


  • Yuyun Irmawati Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Gd. 440-441, Serpong, Tangerang Selatan 15314, Indonesia
  • Shofia Manzalini Physics Department, UIN Sunan Gunung Djati, Jalan A.H. Nasution Rd., Cibiru-Bandung 40614, Indonesia
  • Bambang Sugeng Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Gd. 440-441, Serpong, Tangerang Selatan 15314, Indonesia
  • Sudirman Sudirman Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Gd. 440-441, Serpong, Tangerang Selatan 15314, Indonesia
  • Harayasu Asahara Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
  • Rike Yudianti Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Gd. 440-441, Serpong, Tangerang Selatan 15314, Indonesia




anatase, brookite, f-MWCNT, microwave heating technique, photocatalytic


Decoration of a functionalized multiwalled carbon nanotube (f-MWCNT) surface with titanium dioxide (TiO2) was designed to improve its photocatalytic degradation performance. Structural decoration was achieved by microwave heating at various mass ratios (1:2; 1:4; 1:8; 1:16 wt.%) of titanium (IV) isopropoxide as precursor. The hybrid structure of TiO2/f-MWCNT was characterized by scanning electron microscope and transmission electron microscope (TEM). The crystallite form of the TiO2 nanoparticles was further studied by X-ray diffraction (XRD) and HR?TEM. We report the conformation of high-density TiO2 coated on an f-MWCNT surface at a mass ratio of 1:16 wt.%. XRD analysis revealed a structural transformation from mixture phase (anatase?brookite) at mass ratios of 1:2 and 1:4 wt.% to fully anatase phase for mass ratios of 1:8 and 1:16 wt.%. The transformation was also confirmed by selected area electron diffraction (SAED) and HR?TEM analysis. Our results showed that anatase phase plays a significant role in photodegradation activity.


Download data is not yet available.


Ibrahim, K.S., Carbon Nanotubes-Properties and Applications: A Review, Carbon Lett, 14(3), pp. 131-144, 2013.

Shimizu, A., Kato, H., Sato, T. & Kushida, M., Preparation and Characterization of Oriented Poly (Vinyl Alcohol)/Carbon Nanotube Composite Nanofibers, Jpn J Appl Phys, 56, pp. 1-6, 2017.

Yudianti, R., Onggo, H., Indriyati & Sudirman, Role of Catalytic Synthesis On Growth and Distribution of Platinum Nanoparticle on Carbon Nanotube Surface, Nanosci Nanotechno, 2(6), pp. 171-177, 2012.

Sudirman, Indriyati, Adi, W.A., Yudianti, R. & Budianto, E., Structural Analysis of Platinum Nanoparticles on Carbon Nanotube Surface as Electrocatalyst System, Int J Chem, 9(2), pp. 60-66, 2017.

Carp, O., Huisman, C.L. & Reller, A., Photoinduced Reactivity of Titanium Dioxide, Prog Solid State Chem, 32(1-2), pp. 33-177, 2004.

Anpo. M., Utilization of TiO2 Photocatalysts in Green Chemistry, Pure Appl Chem, 72(7), pp. 1265-1270, 2007.

Tang, R., Jiang, Q. & Liu, Y., Preparation and Study On Photocatalytic Activity of N-doped TiO2 Decorated N-Doped Graphene, Procedia Eng, 205, pp. 573-580, 2017.

Alosfur, F., Jumali, M.H.H., Radiman, S., Ridha, N.J., Yarmo, M.A. & Ali, A., Visible Light-responsive TiO2 coated MWCNTs as a Hybrid Nanocatalysts, Int J Electrochem Sci, 8, pp. 2977-2982, 2013.

Divya, K.S., Athulya, K.M., Umadevi, T.U., Suprabha, T. & Suresh, M., Improving the Photocatalytic Performance of TiO2 via Hybridizing with Graphene, J Semicond, 38(6), 063002, 2017.

Giovannetti, R., Rommozzi, E., Zannotti, M. & D?Amato, C.A., Recent Advances in Graphene Based TiO2 Nanocomposites (Gtio2ns) for Photocatalytic Degradation of Synthetic Dyes, Catalysts, 305(7), pp. 2-34, 2017.

Potirak, P., Pecharapa, W. & Techitdheera, W., Microwave-assisted Synthesis of ZnO/MWCNT Hybrid Nanocomposites and Their Alcohol-Sensing Properties, J Exp Nanosci, 9(1), pp. 96-105, 2014.

Chien-Te, H., Yu-Chia, C., Yu-Fu, C., Mohammad, M.H. & Po-Yen, C.B-S.J., Microwave Synthesis of Titania-Coated Carbon Nanotube Composites For Electrochemical Capacitors, J Power Sourc, 269, pp. 526-533, 2014.

Bin, G.G., George, Z.C. & Puma, I.G., Carbon Nanotubes/Titanium Dioxide (Cnts/Tio2) Nanocomposites Prepared by Conventional and Novel Surfactant Wrapping Sol-Gel Methods Exhibiting Enhanced Photocatalytic Activity, Appl Catal B Environ, 89, pp. 503-209, 2009.

Teck, C., Progress in Polymer Science Nanofiber Technology: Current Status and Emerging Developments, Prog Polym Sci, 70, pp. 1-17, 2017.

Ashkarran, A.A., Fakhari, M., Hamidinezhad, H., Haddadi, H. & Nourani, M.R., TiO2 Nanoparticles Immobilized on Carbon Nanotubes for Enhanced Visible-Light Photo-Induced Activity, J Mater Res Technol, 4(2), pp. 126-32, 2015.

Nguyen, M.T., Nguyen, C.K., Vu, T.M.P., Van Duong, Q., Pham, T.L. & Nguyen, T.C., A Study on Carbon Nanotube Titanium Dioxide Hybrids: Experiment and Calculation, Adv Nat Sci Nanosci Nanotechnol, 5(4), pp. 0-6, 2014.

Hao, L., Miyazawa, K., Yoshida, H. & Lu, Y., Visible-Light-Driven Oxygen Vacancies and Ti3+ Co-Doped TiO2 Coatings Prepared by Mechanical Coating and Carbon Reduction, Mater Res Bull, 97, pp. 13-18, 2018.

Guo, W., Liu, X., Huo, P., Gao, X., Wu, D., Lu, Z. & Yan, Y., Hydrothermal Synthesis Spherical TiO2 and Its Photo-Degradation Property on Salicylic Acid, Appl Surf Sci, 258(18), pp. 6891-6896, 2021.

Archaapinun, K., Witit-anun, N. & Visuttipitukul, P., Effect of Heat Treatment on Phase Transformation of TiO2 and Its Reflectance Properties, J Met Mater Miner, 23(2), pp. 43-49, 2013.

Yudianti, R., Onggo, H., Sudirman, Saito, Y., Iwata, T. & Azuma, J., Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface, Open Mater Sci J, 5(1), pp. 242-247, 2011.

Abdullahi, N., Saion, E., Shaari, A.H., Al-Hada, N.M. & Keiteb, A., Optimisation of The Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation, PLoS One, 10(5), pp. 1-12, 2015.

Kuvarega, A.T. & Mamba, B.B., Double Walled Carbon Nanotube/Tio2 Nanocomposites for Photocatalytic Dye Degradation, Nanomater J, 2016.

Bhattacharya, P., Sahoo, S. & Das, C.K., Microwave Absorption Behaviour of MWCNT Based Nanocomposites in X-Band Region, Express Polym Lett, 7(3), pp. 212-213, 2012.

Galizia, P. & Maizza, G., Heating Rate Dependence of Anatase to Rutile Transformation, Process Appl Ceram, 10(4), pp. 235-241, 2016.

Dai, S., Wu, Y., Sakai, T., Du, Z., Sakai, H. & Abe, M., Preparation of Highly Crystalline TiO2 Nanostructures by Acid-Assisted Hydrothermal Treatment of Hexagonal-Structured Nanocrystalline Titania/ Cetyltri-methyammonium Bromide Nanoskeleton, Nanoscale Res Lett, 5, pp. 1829-1835, 2010.

Byrne, C., Fagan, R., Hinder, S., McCormack, D.E. & Pillai, S., New Approach of Modifying the Anatase to Rutile Transition Temperature in TiO2 Photocatalysts, RSC Adv J, 6, pp. 95232-95238, 2016.

Spiridonova, J., Katerski, A., Danilson, M., Krichevskaya, M., Krunks, M. & Acik, I.O., Effect of the Titanium Isopropoxide : Acetylacetone Molar Ratio on thephotocatalytic activity of TiO2, Molecule, 24, pp. 1-14, 2019.

Lourduraj, S. & Williams, R.V., Effect of Molarity on Sol-Gel Routed Nano TiO2 Thin Films, J Adv Dielectr, 7(6), pp. 1-7, 2017.

Kamaluddin, M.R., Zamri, N.I.I., Kusrini, E., Prihandini, W.W., Mahadi, A.H. & Usman, A., Photocatalytic Activity of Kaolin?Titania Composites to Degrade Methylene Blue Under UV Light Irradiation; Kinetics, Mechanism and Thermodynamics, React Kinet Mech Catal, 133, pp. 517-529, 2021.

Zulmajdi, S.L.N., Zamri, N.I.I., Yasin, H.M., Kusrini, E., Hobley, J. & Usman, A., Comparative Study on the Adsorption, Kinetics, And Thermodynamics of the Photocatalytic Degradation of Six Different Synthetic Dyes on TiO2 Nanoparticles, React Kinet Mech Catal, 129, pp. 519-534, 2020.

Carrera, R., Castillo, N., Arce, E., Vazquez, A.L., Moran-Pineda, M., Montoya, J.A., Del Angle, P. & Castillo, S., Analysis of Polymorphic Nanocrystals of TiO2 By X-Ray Rietveld Re?nement and High-Resolution Transmission Electron Microscopy: Acetaldehyde Decomposition, Res Lett Nanotechnol, pp. 1-5, 2008.

Liu, C., Zhang, L., Liu, R., Gao, Z., Yang, X. & Tu, Z., Hydrothermal Synthesis of N-doped TiO2 Nanowires and N-doped Graphene Heterostructures with Enhanced Photocatalytic Properties, J Alloys Compd, 656, pp. 24-32, 2016.

Vargas, H.J., Structural and Morphological Modification of TiO2 Doped Metal Ions and Investigation of Photo-Induced Charge Transfer Processes, Ph.D. Thesis, Institut des Molules et Matiaux du Mans, France, 2017.

Li, J., Tang, S., Lu, L. & Zeng, H.C., Preparation of Nanocomposites of Metals, Metal Oxides, and Carbon Nanotubes via Self-Assembly, J Am Chem Soc, 129(30), pp. 9401-9409, 2007.

Cong, Y., Li, X. & Qin, Y.D.Z., Carbon-doped TiO2 Coating on Multiwalled Carbon Nanotubes with Higher Visible Light Photocatalytic Activity, Appl Catal B Environ, 107(1-2), pp. 128-134, 2011.