Performance Evaluation of a Continuous Downdraft Gasification Reactor Driven by Electric Motors with Manual Mode of Operation


  • Rachman Setiawan Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
  • Hanif Furqon Hidayat Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
  • Hafif Dafiqurrohman Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
  • Adi Surjosatyo Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
  • Radon Dhelika Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia



biomass gasification, downdraft fixed bed, motor driver, motor performance, rice husk


Gasification is considered a promising option for harnessing energy potential from agricultural waste, such as rice husks. This paper presents a 10-kW rice husk fixed bed gasifier system. This system is an improved version of a prototype previously developed by our research group. Some of the optimized features added to the gasifier include the use of a circular air intake, an improved gas cleaning system, and electric motors that are regulated by a programmable logic controller. Keeping the gasifier system?s operation stable is critical for producing high-quality synthetic gas (syngas). Therefore, performance evaluation of the presented gasifier system was conducted, and the resulting syngas outputs were analyzed. The evaluation also included an investigation into the performance of the motors, particularly those used for feeding and char removal, which are critical components of the system. The results showed that the improved gasifier system was stable with a proper feedstock. A discussion of the parameters affecting the composition of the synthetic gas is also presented.


Download data is not yet available.


Basu, P., Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory., Ed. 3, Academic Press, 2018.

Molino, A., Chianese, S. & Musmarra, D., Biomass Gasification Technology: The State-of-the-Art Overview, J. Energy Chem., 25(1), pp. 10-25, 2016. DOI: 10.1016/j.jechem.2015.11.005.

Wu, Y., Zhang, Q., Yang, W. & Blasiak, W., Two-dimensional Computational Fluid Dynamics Simulation of Biomass Gasification in a Downdraft Fixed-Bed Gasifier with Highly Preheated Air and Steam, Energy and Fuels, 27(6), pp. 3274-3282, 2013. DOI: 10.1021/ef4003704.

Hejazi, B., Grace, J.R. Bi, X. & Mahecha-Botero, A., Kinetic Model of Steam Gasification of Biomass in a Bubbling Fluidized Bed Reactor, Energy and Fuels, 31(2), pp. 1702-1711, 2017. DOI: 10.1021/acs.energyfuels.6b03161.

Pode, R., Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant, Renewable and Sustainable Energy Reviews, 53, pp. 1468-1485, 2016. DOI: 10.1016/j.rser.2015.09.051.

Patel, M. & Karera, A., Sic Whisker from Rice Husk, Microscopic Study, Powder Metall. Int., 23(1), pp. 30-32, 1991.

Andromeda, L., Surjosatyo, A., Dafiqurrohman, H. & Amirullah, M.H., Analysis of Fix Bed Downdraft Biomass Gasification Reactors Continues Operating Characteristics towards Synthetic Gas Quality, AIP Conference Proceedings, pp. 030050-1 - 030050-6, 2020. DOI: 10.1063/5.0013681.

Hidayat, H.F., Setiawan, R., Dhelika, R., Surjosatyo, A. & Dafiqurrohman, H., Investigation of Relative Influence of Process Variables in a 10-Kw Downdraft Fixed-Bed Gasifier with Ann Models, J. Appl. Eng. Sci., (Online First), May 26, 2022. DOI: 10.5937/jaes0-34344.

Kurnianto, I.R., Setiawan, A.G., Surjosatyo, A., Dafiqurrohman, H. & Dhelika, R., Design and Implementation of a Real-Time Monitoring System Based on Internet of Things in a 10-kW Downdraft Gasifier, Evergreen, 9(1), pp. 145-149, 2022.

Dafiqurrohman, H., Surjosatyo, A. & Gibran, F.R., Air Intake Modification for Pyrolysis Optimization on Rice Husk Fixed Bed Downdraft Gasifier with Maximum Capacity of 30 KG/Hour, Int. J. Technol., 7(8), pp. 1352-1361, 2016. DOI: 10.14716/ijtech.v7i8.6889.

Yu, H., Zhang, Z., Li, Z. & Chen, D., Characteristics of Tar Formation during Cellulose, Hemicellulose and Lignin Gasification, Fuel, 118, pp. 250-256 2014. DOI: 10.1016/j.fuel.2013.10.080.

Rahman, A.I.M.M., Chowdhury, M.R., Jahan, S. & Uddin, M.R., Adsorption of Phenol from Aqueous System Using Rice Straw, Int. J. Eng. Technol, 8, pp. 841-846, 2011.

Surjosatyo, A., Haq, I., Dafiqurrohman, H. & Gibran, F.R., Effect of Rice Husk Ash Mass on Sustainability Pyrolysis Zone of Fixed Bed Downdraft Gasifier with Capacity of 10 kg/hour, AIP Conference Proceedings, pp. 020009-1 - 020009-8, 2017. DOI: 10.1063/1.4979225.

Phuphuakrat, T., Namioka, T. & Yoshikawa, K., Tar Removal from Biomass Pyrolysis Gas in Two-step Function of Decomposition and Adsorption, Appl. Energy, 87(7), pp. 2203-2211, 2010. DOI: 10.1016/j.apenergy.2009.12.002.

Surjosatyo, A., Respati, A., Dafiqurrohman, H. & Muammar, Analysis of the Influence of Vortexbinder Dimension on Cyclone Separator Performance in Biomass Gasification System, Procedia Engineering, pp.154-161, 2017. DOI: 10.1016/j.proeng.2017.03.036.

Sodeifian, G. & Niazi, Z., Prediction of CO2 Absorption by Nanofluids Using Artificial Neural Network Modeling, Int. Commun. Heat Mass Transf., 123, 105193 2021, DOI: 10.1016/j.icheatmasstransfer.2021.105193.

Sepyani, M., Shateri, A. & Bayareh, M., Investigating the Mixed Convection Heat Transfer of a Nanofluid in a Square Chamber with a Rotating Blade, J. Therm. Anal. Calorim., 135, pp. 609-623 2019. DOI: 10.1007/s10973-018-7098-x.

Shirazi, M., Shateri, A. & Bayareh, M., Numerical Investigation of Mixed Convection Heat Transfer of a Nanofluid in a Circular Enclosure with a Rotating Inner Cylinder, J. Therm. Anal. Calorim., 133(2), pp. 1061-1073, 2018. DOI: 10.1007/s10973-018-7186-y.

Dafiqurrohman, H., Bagus Setyawan, M.I., Yoshikawa, K. & Surjosatyo, A., Tar Reduction Using an Indirect Water Condenser and Rice Straw Filter after Biomass Gasification, Case Stud. Therm. Eng., 21, 100696, 2020. DOI: 10.1016/j.csite.2020.100696.

Thapa, S., Bhoi, P.R., Kumar, A. & Huhnke, R.L., Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal, Energies, 10(3), pp. 349, 2017. DOI: 10.3390/en10030349.

Dafiqurrohman, H., Kosasih, D., Putra, A.W.N., Setyawan, M.I.B. & Surjosatyo, A., Improvement of Tar Removal Performance in Biomass Gasification Using Fixed-Bed Biomass Filtration, J. Eng. Technol. Sci., 52(4), pp. 546-564, 2020. DOI: 10.5614/j.eng.technol.sci.2020.52.4.7.

Bhattacharya, S.C., Shwe Hla, S. & Pham, H.L., A Study on a Multi-Stage Hybrid Gasifier-Engine System, Biomass and Bioenergy, 21(6), pp. 445-460, 2001. DOI: 10.1016/S0961-9534(01)00048-4.

Jain, A.K., Correlation Models for Predicting Heating Value through Biomass Characteristics, J. Agric. Eng., 34(3), pp. 12-25, 1997.

Martez, J.D., Silva Lora, E.E., Andrade, R.V. & Ja, R.L., Experimental Study on Biomass Gasification in a Double Air Stage Downdraft Reactor, Biomass and Bioenergy, 35(8), pp. 3465-3480, 2011. DOI: 10.1016/j.biombioe.2011.04.049.

Bhoi, P.R., Huhnke, R.L., Kumar, A., Thapa, S. & Indrawan, N., Scale-up of a Downdraft Gasifier System for Commercial Scale Mobile Power Generation, Renew. Energy, 118, pp. 25-33, 2018. DOI: 10.1016/j.renene.2017.11.002.

Wang, Z., He, T., Qin, J., Wu, J., Li, J., et al, Gasification of Biomass with Oxygen-Enriched Air in a Pilot Scale Two-Stage Gasifier, Fuel, 150, pp. 386-393, 2015. DOI: 10.1016/j.fuel.2015.02.056.