Optimization of Electrode Material Composition from Activated Carbon, MWCNT & Graphene to Enhance Performance of Supercapacitor

Authors

  • Heri Rustamaji Department of Chemical Engineering, Faculty of Engineering, Lampung University, Jalan Soemantri Brojonegoro No.1, Bandar Lampung 35141, Indonesia
  • Tirto Prakoso Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa No.10, Bandung 40132, Indonesia
  • Hary Devianto Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa No.10, Bandung 40132, Indonesia
  • Pramujo Widiatmoko Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa No.10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.5

Keywords:

composite material, electrochemical performance, energy storage, nanocarbon, supercapacitor

Abstract

The supercapacitor has gotten a lot of attention as a high-performance energy storage device because of its high power density, good energy density, long life cycle, and extensive application in various electronic applications. To effectively assess its performance, the electrode material composition was optimized with a blend of activated carbon (AC), multiwall carbon nanotube (MWCNT), and graphene (GR). The synergistic effect of AC, CNT, and GR supports the usage of AC/MWCNT/GR as a viable supercapacitor electrode. Furthermore, the surrounding MWCNT enhances AC and GR electronic conductivity, while AC efficiently suppresses GR re-stacking sheets and aggregates MWCNT particles. For supercapacitor electrodes, the optimal composite mixtures of AC, MWCNT, and GR were 71.7%, 20%, and 8.3% wt, respectively. Meanwhile, an outstanding capacitance value of 33.5 F g-1 in 6 M KOH electrolyte was obtained at 2 mV s-1.

Downloads

Download data is not yet available.

References

Zhao, Y., Lu, M., Tao, P., Zhang, Y., Gong, X., Yang, Z., Zhang, G.Q. & Li, H., Hierarchically Porous and Heteroatom Doped Carbon Derived from Tobacco Rods for Supercapacitors, Journal of Power Sources, 307, pp. 391-400, 2016.

Wang, T., Shao, J., Wang, D. & Yang, Y.W., Mesoporous Transition Metal Oxides for Supercapacitors, Nanomaterials, 5, pp. 1667-1689, 2015.

Simon, P. & Gogotsi, Y., Perspectives for Electrochemical Capacitors and Related Devices, Nature Materials, 19, pp.1151-1163, 2020.

Fields, R., Lei, C., Markoulidis, F. & Lekakou, C., The Composite Supercapacitor, Energy Technology, 4, pp. 517?525, 2016.

Park, S., Vosguerichian, M. & Bao, Z., A Review of Fabrication and Applications of Carbon Nanotube Film-based Flexible Electronics, Nanoscale, 5, pp. 1727-1752, 2013.

Khalid, M., Bhardwaj, P. & Varela, H., Carbon-Based Composites for Supercapacitor, Sato, T (Ed.), Science, Technology and Advanced Application of Supercapacitors, London: IntechOpen, 2018.

Shirshova, N., Qian, H., Houll M., Steinke, J.H., Kucernak, A.R., Fontana, Q.P., Greenhalgh, E.S., Bismarck, A. & Shaffer, M.S., Multifunctional Structural Energy Storage Composite Supercapacitors, Faraday Discussions, 172, pp. 81-103, 2014.

Candelaria, S.L., Garcia, B.B., Liu, D. & Cao, G.Z., Nitrogen Modification of Highly Porous Carbon for Improved Supercapacitor Performance, Journal of Materials Chemistry, 22, 9884, 2012.

Simon, P. & Gogotsi, Y., Capacitive Energy Storage in Nanostructured Carbon Electrolyte Systems, Accounts of Chemical Research, 46, pp. 1094-1103, 2013.

Hao, L., Li, X. & Zhi, L., Carbonaceous Electrode Materials for Supercapacitors, Advance Material, 25, pp. 3899-3904, 2013.

El-Kady, M.F., Shao, Y. & Kaner, R.B., Graphene for Batteries, Supercapacitors and Beyond, Nature Review Material, 1, pp.1?14. 2016.

Chen, Y., Zhang, X., Zhang, H., Sun, X., Zhang, D. & Ma, Y., High-Performance Supercapacitors Based on a Graphene?Activated Carbon Composite Prepared by Chemical Activation, RSC Advance, 2, pp. 7747-7753, 2012.

Raza, W., Alib, F., Razac, N., Luoa, Y., Kim, K.H., Yanga, J., Kumar, S., Mehmooda, A. & Kwon, E.E., Recent Advancements in Supercapacitor Technology, Nano Energy, 52, pp.441-473, 2018.

Sianipar, M., Kim, S.H. & Iskandar, F., Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Advance, 7, pp. 51175-51198, 2017.

Zheng, C., Zhou, X.F., Cao, H.L., Wang, G.H. & Liu, Z.P., Synthesis of Porous Graphene/ Activated Carbon Composite with High Packing Density and Large Specific Surface Area for Supercapacitor Electrode Material, Journal of Power Sources, 258, pp. 290-296, 2014.

Trogadas, P., Fuller, T.F. & Strasser, P., Carbon as Catalyst and Support for Electrochemical Energy Conversion, Carbon, 75, pp.5-42, 2014.

Gudavalli, G. & Dhakal, T., A Materials Review in Emerging Materials for Energy Conversion and Storage (Newyork: Elsevier), 274, 2018.

Wang, Y., Wu, Y., Huang Y., Zhang, F., Xi Y., Ma, Y. & Chen., Y., Preventing Graphene Sheets from Restacking for High-Capacitance Performance, The Journal of Physical Chemistry C, 115, pp. 23192-23197, 2011.

Yu, A., Chabot, V. & Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery. Fund, Apply (Boca Raton: CRC Press), 373p, 2013.

Cheng, F., Yang, X., Zhang, S. & Lu, W., Boosting the Supercapacitor Performances of Activated Carbon with Carbon Nanomaterials, Journal of Power Sources, 450, 227678, 2020.

Xu, C., Xu, F., Sun, L., Cao, F., Yu, F., Zhang, H., Yan, E., Peng, H., Chu, H. & Zou. Y., A High-Performance Supercapacitor Based on Nitrogen-Doped Porous Carbon Derived from Cycas Leaves, International Journal of Electrochemical Science, 14, pp.1782-1793, 2019.

Clemente, J. S., Beauchemin, S., Thibault, Y., Ted MacKinnon, & Smith, D., Differentiating Inorganics in Biochars Produced at Commercial Scale Using Principal Component Analysis, ACS Omega, 3, pp. 6931-6944; 2018.

Adinaveen, T., Vijaya, JJ, L. & Kennedy. LJ, Comparative Study of Electrical Conductivity on Activated Carbons Prepared from Various Cellulose Materials, Arab J Sci Eng. 41, pp. 55-65. 2016.

M. Barczak, & Bandosz, T.J., Evaluation of Nitrogen- and Sulfur-Doped Porous Carbon Textiles as Electrode Materials for Flexible Supercapacitors, Electrochim. Acta, 305, pp. 125-136, 2019.

Ivanov, E., Kotsilkova, R., Xia, H., Chen, Y., Donato, R.K., Donato, K., Godoy, AP, Di Maio, R., Silvestre, C., Cimmino, S. & Angelov, V., PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications, Applied Science, 9, 1209, 2019.

Liu, J., Deng, Y., Li, X. & Wang, L., Promising Nitrogen-Rich Porous Carbons Derived from One-Step Calcium Chloride Activation of Biomass-Based Waste for High-Performance Supercapacitors, ACS Sustainable Chemical Engineering, 4, pp.177-187, 2016.

Liang, K., Wang, W., Yu, Y., Liu, L., Haijun, L., Zhang, Y. & Chen, A., Synthesis of Nitrogen-Doped Mesoporous Carbon for High-Performance Supercapacitors, New Journal of Chemistry, 43, pp. 2776-2782, 2019.

Markoulidis, F., Lei, C., Lekakou, C., Duff, D., Khalil, S., Martorana, B. & Cannavaro, I., A Method to Increase the Energy Density Supercapacitor Cells by the Addition of Multiwall Carbon Nanotubes into Activated Carbon Electrodes, Carbon, 68, pp. 58-66, 2014.

Zheng, Z. & Gao, Q., Hierarchical Porous Carbons Prepared by Easy One-Step Carbonization and Activation of Phenol-Formaldehyde Resins with High Performance for Supercapacitors, Journal of Power Sources, 196, pp.1615?1619, 2011.

Wang, L., Gao, Z., Chang, J., Liu, X., Wu, D., Xu, F., Guo, Y. & Jiang., K., Nitrogen-Doped Porous Carbon as Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell, ACS Applied Material Interfaces, 7(36), pp.20234-20244, 2015.

Li, X., Tang, Y., Song, J., Yang, W., Wang, M., Zhu, C., Zhao, W., Zheng, J. & Lin, Y., Self-Supporting Activated Carbon/Carbon Nanotube/ Reduced Graphene Oxide Flexible Electrode for High-Performance Supercapacitor, Carbon, 129, pp.236-244, 2018.

Zhang, F., Zhang, T., Yang, X., Zhang, L., Leng, K., Huang, Y. & Chen, Y., High-Performance Supercapacitor-Battery Hybrid Energy Storage Device Based on Graphene-Enhanced Electrode Materials with Ultrahigh Energy Density, Energy Environmental Science, 6, pp. 1623-1632., 2013.

Balducci A., Belanger, D., Brousse, T., Long, J.W. & Sugimoto, W., A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices, Journal of The Electrochemical Society, 164(7), pp. A1487-A1488, 2017.

Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P. & Saputera, W. H., Urea Nitrogenated Mesoporous Activated Carbon Derived from Oil Palm Empty Fruit Bunch for High-Performance Supercapacitor, Journal of Energy Storage, 52, 104724, 2022.

Markoulidis F., Todorova, N., Grilli, R., Lekakou, C. & Christos Trapalis, C., Composite Electrodes of Activated Carbon and Multiwall Carbon Nanotubes Decorated with Silver Nanoparticles for High Power Energy Storage, Journal of Composites Science, 3(97), pp.2-13, 2019.

Downloads

Published

2022-09-09

How to Cite

Rustamaji, H., Prakoso, T., Devianto, H., & Widiatmoko, P. (2022). Optimization of Electrode Material Composition from Activated Carbon, MWCNT & Graphene to Enhance Performance of Supercapacitor. Journal of Engineering and Technological Sciences, 54(5), 220505. https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.5

Issue

Section

Articles

Most read articles by the same author(s)