Photocatalytic Simulation of Phenol Waste Degradation Using Titanium Dioxide (TiO2) P25-Based Photocatalysts
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.4.6Keywords:
MATLAB, Photocatalytic, phenol, PHOTOREAC, TiO2 , P25, waste treatmentAbstract
Phenol waste treatment is vital in industries such as polymer production, coal gasification, refinery, and coke production. Photocatalytic technology using semiconductor materials offers an effective and ecofriendly approach to degrade phenol. TiO2 P25 is a widely used photocatalyst, known for its cost-effectiveness, favorable optical and electronic properties, high photoactivity, and photostability. The PHOTOREAC application, a recently developed MATLAB-based software, simulates the degradation of phenol using visible light. A study that combines existing literature and research revealed that pH significantly influences photocatalytic activity, with an optimum pH of 7 for TiO2 P25-mediated phenol degradation. The recommended photocatalyst concentration ranged from 0 to 10 g/L for reactor volumes between 25 and 60 mL, and from 0 to 5 g/L for 100-mL reactors. Phenol wastewater volume and light intensity also impact degradation efficiency. Adequate oxygen supply, achieved through bubbling and mixing, is essential for the formation of radical compounds. The Ballari kinetic model proved to be the most suitable for phenol degradation with TiO2 P25. Thus, by combining PHOTOREAC simulations with experimental data, the treatment process could be optimized to achieve higher degradation efficiency and estimate the treatment time for specific waste degradation levels. This study contributes to the advancement of phenol waste treatment and the development of improved photocatalytic wastewater treatment technologies.
Downloads
References
World Health Organization, International Programme on Chemical, Phenol: Health and Safety Guide, World Health Organization: Geneva, 1994.
Sacco, O., Vaiano, V., Daniel, C., Navarra, W., & Venditto, V. Removal of Phenol in Aqueous Media by N-Doped TiO2 Based Photocatalytic Aerogels. Materials Science in Semiconductor Processing, 80, pp. 104-110, 2018. doi: 10.1016/j.mssp.2018.02.032.
Saputera, W.H., Putrie, A.S., Esmailpour, A.A., Sasongko, D., Suendo, V. & Mukti, R., Technology Advances in Phenol Removals: Current Progress and Future Perspectives. Catalysts, 11(8), 998, 2021. doi: 10.3390/catal11080998.
Royaee, S.J. & Sohrabi, M., Application of Photo-Impinging Streams Reactor in Degradation of Phenol in Aqueous Phase. Desalination, 253(1), pp. 57-61, 2010. doi: 10.1016/j.desal.2009.11.033.
Tetteh, E.K., Rathilal, S. & Naidoo, D.B., Photocatalytic Degradation of Oily Waste and Phenol from A Local South Africa Oil Refinery Wastewater Using Response Methodology. Scientific Reports, 10(1), pp. 1-12, 2020. doi: 10.1038/s41598-020-65480-5.
Bilya, M.A. & Sani, M.H., Determination of the Band-Gap of a Semiconductor: Germanium Chip Using Four Probe Set-Up. International Journal of Science and Research, 5(2), pp. 1137-1140, 2016. doi: 10.21275/v5i2.nov161376.
Dragana ?trbac, D., Aggelopoulos, C.A., ?trbac, G., Dimitropoulos, M., Novakovi?, M., Iveti?, T. & Yannopoulos, S.N., Photocatalytic Degradation of Naproxen and Methylene blue: Comparison Between ZnO, TiO2 and Their Mixture. Process Safety and Environmental Protection, 113, pp. 174-183, 2018. doi: 10.1016/j.psep.2017.10.007.
Liu, Y., Zhou, S., Yang, F., Qin, H. & Kong, Y., Degradation of Phenol in Industrial Wastewater over the F?Fe/TiO2 Photocatalysts Under Visible Light Illumination. Chinese Journal of Chemical Engineering, 24(12), pp. 1712-1718, 2016. doi: 10.1016/j.cjche.2016.05.024.
Saputera, W.H., Amri, A.F., Daiyan, R. & Sasongko, D., Photocatalytic Technology for Palm Oil Mill Effluent (POME) Wastewater Treatment: Current Progress and Future Perspective. Materials, 14(11), 2846, 2021. doi: 10.3390/ma14112846.
Muangpratoom, P., The Effect of Temperature on the Electrical Characteristics of Nanofluids Based on Palm Oil. Journal of Engineering and Technological Sciences, 53(3), pp. 554-564, 2021. doi: 10.5614/j.eng.technol.sci.2021.53.3.12.
Nurhayati, C., Susilawati, N., Susanto, T., Marthalia, W., Nugroho, A.K. & Pane, A.P., The Effect of Linear Low-Density Polyethylene and Palm Kernel Shell Ash Mixture on the Physical, Mechanical and Degradation Properties of Paving Blocks. Journal of Engineering and Technological Sciences, 54(3), pp. 531-547, 2022. doi: 10.5614/j.eng.technol.sci.2022.54.3.7.
Monsef, R., Ghiyasiyan-Arani, M. & Salavati-Niasari, M., Design of Magnetically Recyclable Ternary Fe2O3/EuVO4/g-C3N4 Nanocomposites for Photocatalytic and Electrochemical Hydrogen Storage, ACS Applied Energy Materials, 4(1), pp. 680-695, 2021. doi: 10.1021/acsaem.0c02557.
Karami, A., Monsef, R., Shihan, M.R., Qassem, L.Y., Falah, M.W. & Salavati-Niasari, M., UV-Light-Induced Photocatalytic Response of Pechini Sol-Gel Synthesized Erbium Vanadate Nanostructures Toward Degradation of Colored Pollutants. Environmental Technology & Innovation, 28, 102947, 2022. doi: 10.1016/j.eti.2022.102947.
Panahi, A., Monsef, R., Imran, M.K., Mahdi, A.A., Ruhaima, A.A.K. & Salavati-Niasari, M., TmVO4/Fe2O3 Nanocomposites: Sonochemical Synthesis, Characterization, and Investigation of Photocatalytic Activity, International Journal of Hydrogen Energy, 48(10), pp. 3916-3930, 2023. doi: 10.1016/j.ijhydene.2022.10.226.
Lendzion-Bielu?, Z., Wojciechowska, A., Grzechulska-Damszel, J., Narkiewicz, U., ?niadecki, Z. & Idzikowski, B., Effective Processes o Phenol Degradation On Fe3O4-TiO2 Nanostructured Magnetic Photocatalyst. Journal of Physics and Chemistry of Solids, 136, pp. 109178, 2020. doi: 10.1016/j.jpcs.2019.109178.
Matos, J., Ocares-Riquelme, J., Poon, P.S., Monta, R., Garc, X., Campos, K., Herndez-Garrido, J.C. & Titirici, M.M., C-Doped Anatase TiO2: Adsorption Kinetics and Photocatalytic Degradation of Methylene Blue and Phenol and Correlations with DFT Estimations, Journal of Colloid and Interface Science, 547, pp. 14-29, 2019. doi: 10.1016/j.jcis.2019.03.074.
Saputera, W.H., Egiyawati, C., Putrie, A.S., Amri, A.F., Rizkiana, J. & Sasongko, D., Titania Modified Silica from Sugarcane Bagasse Waste for Photocatalytic Wastewater Treatment, IOP Conference Series: Materials Science and Engineering, 1143(1), pp. 012073, 2021. doi: 10.1088/1757-899X/1143/1/012073.
Hamdy, M.S., Saputera, W.H., Groenen, E.J. & Mul, G., A novel TiO2 Composite for Photocatalytic Wastewater Treatment, Journal of Catalysis, 310, pp. 75-83, 2014. DOI: 10.1016/j.jcat.2013.07.017.
Saputera, W.H., Mul, G. & Hamdy, M.S., Ti3+-containing titania: Synthesis Tactics and Photocatalytic Performance. Catalysis Today, 246, pp. 60-66, 2015. doi: 10.1016/j.cattod.2014.07.049.
Ho, T.N.S., Nguyen, T.T., Pham, T.H.T., Ngo, M.T. & Le, M.V., Photocatalytic Degradation of Phenol in Aqueous Solutions Using TiO2/SiO2 Composite, Chemical Engineering Transactions, 78, pp. 427-432, 2020. DOI: 10.3303/CET2078072.
Salavati-Niasari, M. & Amiri, A., Synthesis and Characterization Of Alumina-Supported Mn(II), Co(II), Ni(II) And Cu(II) Complexes of Bis(Salicylaldiminato)Hydrazone as Catalysts for Oxidation of Cyclohexene With Tert-Buthylhydroperoxide. Applied Catalysis A: General, 290(1), pp. 46-53, 2005. doi: 10.1016/j.apcata.2005.05.009.
Salavati-Niasari, M., Zeolite-Encapsulation Copper(II) Complexes with 14-Membered Hexaaza Macrocycles: Synthesis, Characterization and Catalytic Activity. Journal of Molecular Catalysis A: Chemical, 217(1), pp. 87-92, 2004. doi: 10.1016/j.molcata.2004.02.022
Salavati-Niasari, M., Ghanbari, D. & Davar, F., Shape Selective Hydrothermal Synthesis of Tin Sulfide Nanoflowers Based On Nanosheets in The Presence of Thioglycolic Acid, Journal of Alloys and Compounds, 492(1), pp. 570-575, 2010. doi: 10.1016/j.jallcom.2009.11.183.
Monsef, R., Ghiyasiyan-Arani, M. & Salavati-Niasari, M., Application of Ultrasound-Aided Method for the Synthesis of NdVO4 Nano-Photocatalyst and Investigation of Eliminate Dye in Contaminant Water, Ultrasonics Sonochemistry, 42, pp. 201-211, 2018. doi: 10.1016/j.ultsonch.2017.11.025
Amiri, M., Eskandari, K. & Salavati-Niasari, M., Magnetically Retrievable Ferrite Nanoparticles in the Catalysis Application, Advances in Colloid and Interface Science, 271, 101982, 2019. doi: 10.1016/j.cis.2019.07.003.
Irmawati, Y. Manzalini, S., Sugeng, B., Sudirman, Asahara, H. & Yudianti, R., Microwave-assisted Synthesis of Functionalized Multiwalled Carbon Nanotube?Titanium Dioxide Hybrid Structure and Photodegradation, Journal of Engineering and Technological Sciences, 54(4), pp. 744-756, 2022. doi: 10.5614/j.eng.technol.sci.2022.54.4.7.
Acosta-Herazo, R., Caveral-Velquez, B., Pez-Giraldo, K., Mueses, M.A., Pinz-Cdenas, M.H. & Machuca-Martez, F., A MATLAB-Based Application for Modeling and Simulation of Solar Slurry Photocatalytic Reactors for Environmental Applications, Water, 12(8), 2196, 2020. doi: 10.3390/w12082196.
Finlayson-Pitts, B.J. & J.N. Pitts., Chapter 1 ? Overview of the Chemistry of Polluted and Remote Atmospheres, in Chemistry of the Upper and Lower Atmosphere, B.J. Finlayson-Pitts and J.N. Pitts, Editors. 2000, Academic Press: San Diego. pp. 1-14.
Malekshoar, G., Pal, K., He, Q., Yu, A. & Ray, A.K., Enhanced Solar Photocatalytic Degradation of Phenol with Coupled Graphene-Based Titanium Dioxide and Zinc Oxide, Industrial & Engineering Chemistry Research, 53, pp. 18824-18832, 2014. doi: 10.1021/ie501673v.
Gska, P., Zaleska, A., Suska, A. & Hupka, J., Photocatalytic Activity and Surface Properties of Carbon-Doped Titanium Dioxide, Physicochemical Problems of Mineral Processing, 43, pp. 21-30, 2009.
Zieli?ska, A., Kowalska, E., Sobczak, J.W., ??cka, I., Gazda, M., Ohtani, B., Hupka, J. & Zaleska, A., Silver-Doped TiO2 Prepared by Microemulsion Method: Surface Properties, Bio- And Photoactivity. Separation and Purification Technology, 72(3), pp. 309-318, 2010. doi: 10.1016/j.seppur.2010.03.002
Liu, S. & Chen, Z., A Visible Light Response TiO2 Photocatalyst Realized by Cationic S-Doping and Its Application for Phenol Degradation, Journal of Hazardous Materials, 152(1), pp. 48-55, 2008. doi: 10.1016/j.jhazmat.2007.06.062.
Kang, X., Song, X.Z., Han, Y., Cao, J. & Tan, Z., Defect-Engineered TiO2 Hollow Spiny Nanocubes for Phenol Degradation under Visible Light Irradiation. Scientific Reports, 8(1), 5904, 2018. doi: 10.1038/s41598-018-24353-8.
Yu, S., Yun, H.J., Kim, Y.H. & Yi, J., Carbon-doped TiO2 Nanoparticles Wrapped with Nanographene as A High Performance Photocatalyst for Phenol Degradation under Visible Light Irradiation, Applied Catalysis B: Environmental, 144, pp. 893-899, 2014. doi: 10.1016/j.apcatb.2013.08.030.
Deng, Y., Xiao, Y., Zhou, Y., Zeng, T., Xing, M. & Zhang, J., A Structural Engineering-Inspired Cds Based Composite for Photocatalytic Remediation of Organic Pollutant and Hexavalent Chromium, Catalysis Today, 335, pp. 101-109, 2019. doi: 10.1016/j.cattod.2018.09.012.
Portela, R., Suez, S., Tessinari, R.F., Herndez-Alonso, M.D., Canela, M.C. & Schez, B., Solar/Lamp-Irradiated Tubular Photoreactor for Air Treatment with Transparent Supported Photocatalysts, Applied Catalysis B: Environmental, 105(1), pp. 95-102, 2011. doi: 10.1016/j.apcatb.2011.03.039.
Ochoa-Gutirez, K.S., Tabare-Aguilar, E., Mueses, M., Machuca-Martez, F. & Puma, G.L., A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for Solar Photocatalytic Degradation of Water Contaminants, Chemical Engineering Journal, 341, pp. 628-638, 2018. doi: 10.1016/j.cej.2018.02.068.
Sutisna, Rokhmat, M., Wibowo, E., Khairurrijal & Abdullah, M., Prototype of a Flat-Panel Photoreactor Using TiO2 Nanoparticles Coated On Transparent Granules for The Degradation of Methylene Blue Under Solar Illumination, Sustainable Environment Research, 27(4), pp. 172-180, 2017. doi: 10.1016/j.serj.2017.04.002.
Acosta-Herazo, R., Monterroza-Romero, J., Mueses, M., Machuca-Martez, F., Puma, G.L., Coupling the Six Flux Absorption?Scattering Model to the Henyey?Greenstein Scattering Phase Function: Evaluation and Optimization of Radiation Absorption in Solar Heterogeneous Photoreactors, Chemical Engineering Journal, 302, pp. 86-96, 2016. doi: 10.1016/j.cej.2016.04.127.
Wardhani, S., Purwonugroho, D., Fitri, C.W. & Prananto, Y.P., Effect of pH and Irradiation Time on TiO2-Chitosan Activity for Phenol Photo-Degradation, AIP Conference Proceedings, 2021(1), 2018. doi: 10.1063/1.5062759
Onkani, S.P., Diagboya, P.N., Mtunzi, F.M., Klink, M.J., Olu-Owolabi, B.I. & Pakade, V., Comparative Study of the Photocatalytic Degradation of 2?Chlorophenol Under UV Irradiation Using Pristine and Ag-Doped Species of TiO2, ZnO and ZnS Photocatalysts, Journal of Environmental Management, 260, pp. 110145, 2020. doi: 10.1016/j.jenvman.2020.110145.
Pan, G., D. Wang, & Liu, Y., Photocatalytic Degradation Pathways and Adsorption Modes of H-Acid in TiO2 Suspensions, Chinese Science Bulletin, 57(10), pp. 1102-1108, 2012. DOI: 10.1007/s11434-011-4894-0.
Chowdhury, P., Moreira, J., Gomaa, H. & Ray, A.K., Visible-Solar-Light-Driven Photocatalytic Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study, Industrial & Engineering Chemistry Research, 51(12), pp. 4523-4532, 2012. doi: 10.1021/ie2025213.
Reza, K.M., Kurny, A.S.W. & Gulshan, F., Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review, Applied Water Science, 7, pp. 1569-1578, 2017. doi: 10.1007/s13201-015-0367-y.
Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J. & Sun, J., Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review. RSC Advances, 5, pp. 14610-14630, 2015. doi: 10.1039/C4RA13734E.
Abdullah, A.M., Al-Thani, N.J., Tawbi, K. & Al-Kandari, H., Carbon/Nitrogen-Doped TiO2: New Synthesis Route, Characterization and Application for Phenol Degradation, Arabian Journal of Chemistry, 9(2), pp. 229-237, 2016. doi: 10.1016/j.arabjc.2015.04.027.
Ungan, H. & Tekin, T., Effect of the Sonication and Coating Time on the Photocatalytic Degradation of TiO2, TiO2-Ag, And TiO2-Zno Thin Film Photocatalysts, Chemical Engineering Communications, 207(7), pp. 896-903, 2020. doi: 10.1080/00986445.2019.1630395.
Zhai, H., Qi, J., Zhang, X., Li, H., Yang, L., Hu, C., Liu, H. & Yang, J., Preparation and Photocatalytic Performance of Hollow Structure LiNb3O8 Photocatalysts, Nanoscale Research Letters, 12(1), pp. 519, 2017. doi: 10.1186/s11671-017-2291-6.
Khayyat, S.A., Selvin, R., Roselin, L.S. & Umar, A., Photocatalytic Oxidation of Phenolic Pollutants and Hydrophobic Organic Compounds in Industrial Wastewater Using Modified Nanosize Titanium Silicate-1 Thin Film Technology, Journal of Nanoscience and Nanotechnology, 14(9), pp. 7345-7350, 2014. doi: 10.1166/jnn.2014.9237.
Khlyustova, A., Sirotkin, N., Kusova, T., Kraev, A., Titov, V. & Agafonov, A., Doped TiO2: The Effect of Doping Elements on Photocatalytic Activity, Materials Advances, 1(5), pp. 1193-1201, 2020. doi: 10.1039/D0MA00171F.
Dozzi, M.V. & Selli, E., Doping TiO2 with p-Block Elements: Effects on Photocatalytic Activity, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14, pp. 13-28, 2013. doi: 10.1016/j.jphotochemrev.2012.09.002.
Carp, O., Huisman, C.L. & Reller, A., Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32(1), pp. 33-177, 2004. doi: 10.1016/j.progsolidstchem.2004.08.001.
Mueses, M.A., Machuca-Martinez, F. & Puma, G.L., Effective Quantum Yield and Reaction Rate Model for Evaluation of Photocatalytic Degradation of Water Contaminants in Heterogeneous Pilot-Scale Solar Photoreactors. Chemical Engineering Journal, 215-216, pp. 937-947, 2013. doi: 10.1016/j.cej.2012.11.076.