Stiffness and Creep Properties of HRS-BC Powered by Palm Shell Gasification in Dryer Unit

Authors

  • Intan Devi Nataliasari Departement of Civil Engineering, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36, Surakarta 57126, Indonesia
  • Sunu Herwi Pranolo Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36, Surakarta 57126, Indonesia
  • Florentina Pungky Pramesti Departement of Civil Engineering, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36, Surakarta 57126, Indonesia
  • Ary Setyawan Departement of Civil Engineering, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36, Surakarta 57126, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.5

Keywords:

asphalt mixing plant, deformation, HRS-BC, palm shell, stiffness

Abstract

Roads are infrastructure that is very important in supporting people?s daily lives. With the high growth rate of traffic, the traffic load will cause damage to the road pavement in the form of deformation (rutting) and fatigue. The performance of an HRS-BC asphalt mixture was investigated to determine the asphalt?s resistance to damage. HRS-BC asphalt mixture specimens were produced by a palm shell AMP and by a diesel AMP. The performance of the HRS-BC asphalt mixture was tested in the laboratory with indirect tensile stiffness modulus (ITSM) and dynamic creep test. The results showed that the HRS-BC asphalt mixture sample produced by the palm shell AMP had better stiffness than the HRS-BC asphalt mixture produced by the diesel AMP. Both the samples of the HRS-BC asphalt mixture produced by the palm shell AMP and by the diesel AMP were not deformed when given a standard load of 100 kPa and 3,600 load repetitions.

Downloads

Download data is not yet available.

References

Barzin, S., D?Costa, S. & Graham, D.J., A Pseudo ? Panel Approach to Estimating Dynamic Effects of Road Infrastructure on Firm Performance in a Developing Country Context, Reg. Sci. Urban Econ., 70, pp. 20-34, 2018. DOI: 10.1016/j.regsciurbeco.2018.02.002.

Piuzzi, G.P., Scheuermann Filho, H.C., Villena Del Carpio, J.A. & Consoli, N.C., The Effects of Porosity, Asphalt Content and Fiberglass Incorporation on the Tensile Strength and Resilient Modulus of Asphalt Concrete Blends, Geotext. Geomembranes, 49(3), pp. 864-870, 2021. DOI: 10.1016/j.geotexmem.2021.01.002.

Pranolo, S.H., Setyono, P. & Fauzi, M.A., Life Cycle Analysis of Palm Kernel Shell Gasification for Supplying Heat to an Asphalt Mixing Plant, Waste Dispos. Sustain. Energy, 2(1), pp. 55-63, 2020. DOI: 10.1007/s42768-019-00023-x.

Sukirman, S., Hot Mix Asphalt Concrete, ed. 3, Institut Teknologi Nasional Bandung, 109p, 2016.ISBN: 978 979 96088 9 5.

The Ministry of Public Works and Public Housing of the Republic of Indonesia, 2018 General Specification for Road and Bridge Construction Works, 2019.

Zhang, W., Chang, S., Wu, W., Dong, L., Chen, Z. & Chen, G., A Diesel/Natural Gas Dual Fuel Mechanism Constructed to Reveal Combustion and Emission Characteristics, Energy, 179, pp. 59-75, 2019. DOI: 10.1016/j.energy.2019.04.106.

Nurhayati, C., Susilawati, N., Susanto, T., Marthalia, W., Nugroho, A.K., & Pane, A.P., The Effect of Linear Low-Density Polyethylene and Palm Kernel Shell Ash Mixture on the Physical, Mechanical and Degradation Properties of Paving Blocks, J. Eng. Technol. Sci., 54(3), 2022. DOI: 10.5614/j.eng.technol.sci.2022.54.3.7.

Yaro, N.S.A., Napiah, M., Sutanto, M.H., Usman, A., Mizwar, I.K. & Umar, A.M., Engineering Properties of Palm Oil Clinker Fine-Modified Asphaltic Concrete Mixtures, J. Eng. Technol. Sci., 54(2), 2022. DOI: 10.5614/j.eng.technol.sci.2022.54.2.5.

Yoder, E.J. & Witczak, M.W., Principles of Pavement Design, Princ. Pavement Des., John Wiley & Sons, Hoboken, 711p., 1975.

Corradini, A. & Cerni, G., A New Analytical Approach for Stiffness Loss Modelling of Asphalt Mixtures under Cyclic Indirect Tensile Loadings, Int. J. Fatigue, 135(2). 105535, 2020. DOI: 10.1016/j.ijfatigue.2020.105535.

Li, Y., Anti-Rutting Performance Evaluation of Modified Asphalt Binders: A Review, J. Traffic Transp. Eng. (English Ed.), 8(3), pp. 339-355, 2021. DOI: 10.1016/j.jtte.2021.02.002.

Ali, Y., Irfan, M., Ahmed, S. & Ahmed, S., Permanent Deformation Prediction of Asphalt Concrete Mixtures ? A Synthesis to Explore a Rational Approach, Constr. Build. Mater., 153, pp. 588-597, 2017. DOI: 10.1016/j.conbuildmat.2017.07.105.

Barazi Jomoor, N., Fakhri, M. & Keymanesh, M.R., Determining the Optimum Amount of Recycled Asphalt Pavement (RAP) in Warm Stone Matrix Asphalt Using Dynamic Creep Test, Constr. Build. Mater., 228, 116736, 2019. DOI: 10.1016/j.conbuildmat.2019.116736.

Karami, M., Nikraz, H., Sebayang, S. & Irianti, L., Laboratory Experiment on Resilient Modulus of BRA Modified Asphalt Mixtures, Int. J. Pavement Res. Technol., 11(1), pp. 38-46, 2018. DOI: 10.1016/j.ijprt.2017.08.005.

Tayebali, A.A., Tsai, B.-W. & Monismith, C.L., Stiffness of Asphalt-Aggregate Mixes, SHRP A-388, National Academy of Sciences, 1994.

?rek, J., Stiffness Fatigue of Asphalt Mixtures for Pavement Construction, Slovak J. Civ. Eng., 26(2), pp. 24-29, 2018. DOI: 10.2478/sjce-2018-0010.

Pranolo, S.H., Waluyo, J., Setiawan, A., Hidayat, H. & Hati, W.P., The Study of Palm Kernel Shell Updraft Gasification for Supplying Heat to an Asphalt Mixing Plant, IOP Conf. Ser. Mater. Sci. Eng., 1098(2), 022003, 2021. DOI: 10.1088/1757-899x/1098/2/022003.

Anyaoha, K.E., Sakrabani, R., Patchigolla, K. & Mouazen, A.M., Co-Gasification of Oil Palm Biomass in a Pilot Scale Downdraft Gasifier, Energy Reports, 6, pp. 1888-1896, 2020. DOI: 10.1016/j.egyr.2020.07.009.

Briliak, D. & Remi?ov E., Research into Effect of Asphalt Mixture Aging on Stiffness, Transp. Res. Procedia, 55(2019), pp. 1251-1257, 2021. DOI: 10.1016/j.trpro.2021.07.107.

Li, X.J., Li, Y., Li, J., Shen, Y., Zhang, C. & Wei, J., Effect of Laboratory Long-Term Oven Aging on the Stiffness of Asphalt Mixtures, Constr. Build. Mater., 258, 120252, 2020. DOI: 10.1016/j.conbuildmat.2020.120252.

Xu, Y. & Sun, L., Study on Permanent Deformation of Asphalt Mixtures by Single Penetration Repeated Shear Test, Procedia - Soc. Behav. Sci., 96, no. Cictp, pp. 886-893, 2013. DOI: 10.1016/j.sbspro.2013.08.101.

Guo, Q., Li, L., Cheng, Y., Jiao, Y. & Xu, C., Laboratory Evaluation on Performance of Diatomite and Glass Fiber Compound Modified Asphalt Mixture, Mater. Des., 66(PA), pp. 51-59, 2015. DOI: 10.1016/j.matdes.2014.10.033.

Hartman, A.M., Gilchrist, M.D. & Walsh, G., Effect of Mixture Compaction on Indirect Tensile Stiffness and Fatigue, J. Transp. Eng., 127(5), pp. 370-378, 2001. DOI: 10.1061/ (ASCE) 0733-947X (2001)127: 5(370).

BSI Standards Publication, Bituminous Mixtures ? Test Methods ? Part 26: Stiffness, 2018. ISBN: 978 0 580 91782 0.

Khodaii, A. & Mehrara, A., Evaluation of Permanent Deformation of Unmodified and SBS Modified Asphalt Mixtures Using Dynamic Creep Test, Constr. Build. Mater., 23(7), pp. 2586-2592, 2009. DOI: 10.1016/j.conbuildmat.2009.02.015.

Mirzapour Mounes, S., Karim, M.R., Khodaii, A. & Almasi, M.H., Evaluation of Permanent Deformation of Geogrid Reinforced Asphalt Concrete Using Dynamic Creep Test, Geotext. Geomembranes, 44(1), pp. 109-116, 2016. DOI: 10.1016/j.geotexmem.2015.06.003.

BSI Standards Publication, Bituminous Mixtures ? Test Methods ? Part 25: Cyclic Compression Test, 2016. ISBN: 978 0 580 84020 3.

Moreno-Navarro, F., Sol-Schez, M., Rubio-Gez, M.C. & Segarra-Martez, M., The Use of Additives for the Improvement of the Mechanical Behavior of High Modulus Asphalt Mixes, Constr. Build. Mater., 70, pp. 65-70, 2014. DOI: 10.1016/j.conbuildmat.2014.07.115.

Downloads

Published

2022-12-26

How to Cite

Nataliasari, I. D., Pranolo, S. H., Pramesti, F. P., & Setyawan, A. (2022). Stiffness and Creep Properties of HRS-BC Powered by Palm Shell Gasification in Dryer Unit. Journal of Engineering and Technological Sciences, 54(6), 220605. https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.5

Issue

Section

Articles