Structural Analysis and Service Life Prediction of Rubberized Thin Surfacing Hot Mix Asphalt
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.5.3Keywords:
BISAR 3.0, KENPAVE, overlay, rubberized asphalt, service lifeAbstract
Rubberized thin surfacing hot mix asphalt (RTSHMA) is a type of flexible pavement that is currently being developed. It can provide the same good performance as asphalt concrete?wearing course (AC-WC). Based on previous research, the use of crumb rubber in the asphalt mixture can provide several advantages, such as increasing the flexibility of the mix so that the pavement is more resistant to cracking. Based on research showing the advantages of rubberized asphalt, the idea emerged to apply it in the field, namely on the Palur?Sragen City Boundary section as wearing course. The method of analysis in this study was modeling the pavement structure with the KENPAVE and BISAR 3.0 programs. The analysis results showed that the AC-WC model and RTSHMA model have the same good performance because both of them have a service life of more than twenty years, which is the standard for flexible pavements. However, RTSHMA has an advantage, i.e., the thickness layer is 25% thinner than AC-WC?s. With a thinner layer than AC-WC but the same good performance, RTSHMA is worth considering as an alternative pavement, especially for overlays.
Downloads
References
Yaro, N.S.A., Napiah, M., Sutanto, M.H., Usman, A., Mizwar, I.K. & Umar, A.M., Engineering Properties of Palm Oil Clinker Fine-Modified Asphaltic Concrete Mixtures, J. Eng. Technol. Sci., 54(2), 220205, 2022. doi: 10.5614/j.eng.technol.sci.2022.54.2.5.
Nataliasari, I.D., Pranolo, S.H., Pramesti, F.P. & Setyawan, A., Stiffness and Creep Properties of HRS-BC Powered by Palm Shell Gasification in Dryer Unit, J. Eng. Technol. Sci., 54(6), 220605, 2022. doi: 10.5614/j.eng.technol.sci.2022.54.6.5.
Chen, S., Gong, F., Ge, D., You, Z. & Sousa, J. B., Use of Reacted and Activated Rubber in Ultra-thin Hot Mixture Asphalt Overlay for Wet-freeze Climates, J. Clean. Prod., 232, pp. 369-378, 2019. doi: 10.1016/j.jclepro.2019.05.364.
Jiang, W., Yuan, D., Shan, J., Ye, W., Lu, H. & Sha, A., Experimental Study of the Performance of Porous Ultra-thin Asphalt Overlay, Int. J. Pavement Eng., 23(6), pp. 2049-2061, 2020. doi: 10.1080/10298436.2020.1837826.
Zulu, K., Singh, R.P. & Shaba, F.A., Environmental and Economic Analysis of Selected Pavement Preservation Treatments, Civ. Eng. J., 6(2), pp. 210-224, 2020. doi: 10.28991/cej-2020-03091465.
Al-Sabaeei, A.M., Mustofa, B.A., Sutanto, M.H., Sunarjono, S. & Bala, N., Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer, J. Eng. Technol. Sci., 52(3), pp. 385-398, 2020. doi: 10.5614/j.eng.technol.sci.2020.52.3.6.
Adamu, M., Mohammed, B. S., Shafiq, N. & Liew, M. S., Durability Performance of High Volume Fly Ash Roller Compacted Concrete Pavement Containing Crumb Rubber and Nano Silica, Int. J. Pavement Eng., 21(12), pp. 1437-1444, 2020. doi: 10.1080/10298436.2018.1547825.
Pratama Ilyas, M. A., Setyawan, A. & Djumari, D., Marshall Characteristics and Stiffness Modulus of Thin Surfacing Hot Mix Asphalt with Crumb Rubber Addition, Matriks Tek. Sipil, 7(4), pp. 408-414, 2019. doi: 10.20961/mateksi.v7i4.38479. (Text in Indonesian)
Sugiyanto, G., Characterization of Asphalt Concrete Produced from Scrapped Tire Rubber, Eng. J., 21(4), pp. 193-206, 2017. doi: 10.4186/ej.2017.21.4.193.
Setyawan, A., Febrianto, N. & Sarwono, D., Design and Properties of Thin Surfacing Hot Mix Asphalt Containing Crumb Rubber as Partial Aggregate Replacement, IOP Conf. Ser. Earth Environ. Sci., 75(1), 2017. doi: 10.1088/1755-1315/75/1/012016.
Setyawan, A., Nugroho, S.K., Irsyad, A.M., Mutaqo, H.F., Ramadhan, P., Sumarsono, A., Pramesti, F.P., The Use of Crumb Rubber as Substitute of Fine Aggregate for Hot Asphalt Mixture Using Polymer Modified Bitumen, IOP Conf. Ser. Mater. Sci. Eng., 333(1), 012093, 2018. doi: 10.1088/1757-899X/333/1/012093.
Li, S., Tang, L. & Yao, K., Comparison of Two Typical Professional Programs for Mechanical Analysis of Interlayer Bonding of Asphalt Pavement Structure, Adv. Mater. Sci. Eng., 2020(3), 5850627, 2020. doi: 10.1155/2020/5850627.
Rind, T.A., Jhatial, A.A., Sandhu, A.R., Bhatti, I.A. & Ahmed, S., Fatigue and Rutting Analysis of Asphaltic Pavement Using KENLAYER Software, J. Appl. Eng. Sci., 9(2), pp. 177-182, 2019. doi: 10.2478/jaes-2019-0024.
Yaghoubi, E., Sudarsanan, N. & Arulrajah, A., Stress-strain Response Analysis of Demolition Wastes as Aggregate Base Course of Pavements, Transp. Geotech., 30, 100599, 2021. doi: 10.1016/j.trgeo.2021.100599.
Sudarsanan, N. & Kim, Y.R., A Critical Review of the Fatigue Life Prediction of Asphalt Mixtures and Pavements, J. Traffic Transp. Eng., 9(5), pp. 808-835, 2022. doi: 10.1016/j.jtte.2022.05.003.
Taghipoor M., Tahami A. & Forsat M., Numerical and Laboratory Investigation of Fatigue Prediction Models of Asphalt Containing Glass Wastes, Int. J. Fatigue, 140, 105819, 2020. doi: 10.1016/j.ijfatigue.2020.105819.
Zhi S., Gun W.W., Hui L.X. & Bo T., Evaluation of Fatigue Crack Behavior in Asphalt Concrete Pavements with Different Polymer Modifiers, Constr. Build. Mater., 27(1), pp. 117-125, 2012. doi: 10.1016/j.-conbuildmat.2011.08.017.
Lancaster I. M., Khalid H.A. & Kougioumtzoglou, I.A., Extended FEM Modelling of Crack Propagation Using The Semi-circular Bending Test, Constr. Build. Mater., 48, pp. 270-277, 2013. doi: 10.1016/j.conbuildmat.2013.06.046.
Weise C., Werkmeister S. & Wellner F., Determination of the Fatigue Behaviour of Asphalt Base Mixes Using the Indirect Tensile and the 4 Point Bending Test, in 2nd Workshop on Four Point Bending, Pais (ed.), University of Minho, 2009.
Yang, K., Li, R., Castorena, C. & Underwood, B.S., Correlation of Asphalt Binder Linear Viscoelasticity (LVE) Parameters and The Ranking Consistency Related to Fatigue Cracking Resistance, Constr. Build. Mater., 322(3), 126450, 2022. doi: 10.1016/j.conbuildmat.2022.126450.
Barros, L.M., Nascimento, L.A.H., Arag, F.T.S., Underwood, B.S. & Pivetta, F.C., Characterization of the Permanent Deformation of Asphalt Mixtures Based on Indexes and on Pavement Structural Performance, Constr. Build. Mater., 326(1), 126555, 2022. doi: 10.1016/j.conbuildmat.2022.126555.
Ismael, M., Fattah, M.Y. & Jasim, A.F., Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers, J. Eng., 28(2), pp. 99-116, 2022. doi: 10.31026/j.eng.2022.02.07.
Dirjen Bina Marga, Manual Pavement Design (Revision June 2017), Indonesian Public Works Department, 2017.
Huang, Y.H., Solutions Manual for Pavement Analysis and Design 2nd Edition, Pearson Education Inc., 2004.
Shell International Oil Products B. V. & The Hague, BISAR 3.0 User Manual, Bitumen Business Group, 1998.