An Improved Capillary Pressure Model for Fractal Porous Media: Application to Low-Permeability Sandstone

Authors

  • Muhammad Saafan Department of Petroleum Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
  • Mysara Mohyaldinn Department of Petroleum Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
  • Khaled Elraies Department of Petroleum Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.7

Keywords:

Capillary pressure; Pore structure modeling; Capillary pressure curves; Fractal model; Genetic Algorithm

Abstract

Capillary pressure is a crucial input in reservoir simulation models. Generally, capillary pressure measurements are expensive and time-consuming; therefore, there is a limitation on the number of cores tested in the laboratory. Accordingly, numerous capillary pressure models have been suggested to match capillary pressure curves and overcome this limitation. This study developed a new fractal capillary pressure model by depicting the porous system as a bundle of tortuous triangular tubes. The model imitates the pores? angularity, providing a more accurate representation of the pore system than smooth circular openings. Moreover, triangular tubes allow the wetting phase to be retained in the tube?s corners. A genetic algorithm was employed to match the capillary pressure curves and obtain the proposed model?s parameters. Capillary pressure data of eight low-permeability sandstone samples from the Khatatba formation in the Western Desert of Egypt were utilized to test the proposed model. The results revealed that the developed model reasonably matched the laboratory-measured data.

Downloads

Download data is not yet available.

References

Kewen L., Theoretical Development of the Brooks-Corey Capillary Pressure Model from Fractal Modeling of Porous Media, Proc. SPE/DOE Symp. Improv. Oil Recover., 2004 April, Society of Petroleum Engineers, 2004. DOI:10.2523/89429-MS.

Foroozesh, J., Dier M.A. & Rezk, M.G., A Simulation Study on CO2 Sequestration in Saline Aquifers: Trapping Mechanisms and Risk of CO2 Leakage. MATE, Web Conf., 225, pp. 0-5, 2018. DOI:10.1051/matecconf/201822503004.

Rezk, M.G., Foroozesh, J., Abdulrahman, A. & Gholinezhad, J., CO2 Diffusion and Dispersion in Porous Media: Review of Advances, Experimental Measurements and Mathematical Models, Energy & Fuels., 36, pp. 133-55, 2022. DOI: 10.1021/acs.energyfuels.1c03552.

Yang, J., Liu, Z., Chen, L. & Huang, Y., New Mathematical Model for Predicting Capillary Pressure, Chem Technol Fuels Oils, 53, pp. 392-398, 2017. DOI:10.1007/s10553-017-0816-4.

Foroozesh, J., Mohamed Abdalla, A.I., Zivar, D. & Douraghinejad, J., Stress-Dependent Fluid Dynamics of Shale Gas Reservoirs: A Pore Network Modeling Approach, J. Nat. Gas. Sci. Eng., 95, 104243, 2021. DOI: 10.1016/j.jngse.2021.104243.

Shabani, A., Zivar, D., Jahangiri, H.R. & Shahrabadi, A., Application of Pore Network Modeling in Deep Bed Filtration Analysis, SN Appl Sci., 2, 1537, 2020. DOI:10.1007/s42452-020-03356-z.

Yu, B. & Li, J., ERRATUM: Some Fractal Characters of Porous Media, Fractals, 10, pp. 365-372, 2002. DOI:10.1142/S0218348X02001300.

Li, C., Shen, Y., Ge, H., Su, S. & Yang, Z., Analysis of Spontaneous Imbibition in Fractal Tree-like Network System, Fractals, 24, pp. 1-12, 2016. DOI:10.1142/S0218348X16500353.

Yu, B. & Cheng, P., A Fractal Permeability Model for Bi-Dispersed Porous Media, Int J Heat Mass Transf., 45, pp. 2983-2993, 2002. DOI:10.1016/S0017-9310(02)00014-5.

Xu, P. & Yu, B., Developing a New Form of Permeability and Kozeny?Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry, Adv Water Resour., 31, pp. 74-81, 2008. DOI: 10.1016/j.advwatres.2007.06.003.

Saafan, M. & Ganat, T., A New Capillary Pressure Model from Fractal Characterization of Porous Medium: A Case Study from Malaysia, Solid State Technol., 63, pp. 936-946, 2020.

Saafan, M. & Ganat, T., Inferring Capillary Pressure Curve from 2D Rock Images Based on Fractal Theory in Low-Permeability Sandstone: A New Integrated Approach, Fractals, 29, 2150149, 2021. DOI:10.1142/ S0218348X21501498.

Saafan, M., Ganat, T., Mohyaldinn, M. & Chen, X., A Fractal Model for Obtaining Spontaneous Imbibition Capillary Pressure Curves Based on 2D Image Analysis of Low-Permeability Sandstone, J Pet Sci Eng, 208, 109747, 2022. DOI: 10.1016/j.petrol.2021.109747.

Meng, H., Shi, Q., Liu, T., Liu, F. & Chen, P., The Percolation Properties of Electrical Conductivity and Permeability for Fractal Porous Media, Energies, 12, 1085, 2019. DOI:10.3390/en12061085.

Wei, W., Cai, J., Hu, X. & Han, Q., An Electrical Conductivity Model for Fractal Porous Media, Geophys Res Lett., 42, pp. 4833-4840, 2015. DOI: 10.1002/2015GL064460.

Li, K., More General Capillary Pressure and Relative Permeability Models from Fractal Geometry, J. Contam Hydrol., 111, pp. 13-24, 2010. DOI: 10.1016/j.jconhyd.2009.10.005.

Cai, J., Hu, X., Standnes, D.C. & You, L., An Analytical Model for Spontaneous Imbibition in Fractal Porous Media Including Gravity. Colloids Surfaces A Physicochem Eng., Asp., 414, pp. 228-233, 2012. DOI: 10.1016/j.colsurfa.2012.08.047.

Gao, H., Yu, B., Duan, Y. & Fang, Q., Fractal Analysis of Dimensionless Capillary Pressure Function, Int. J. Heat Mass. Transf., 69, pp. 26-33, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.006.

Patzek, T.W. & Silin, D.B., Shape Factor and Hydraulic Conductance in Noncircular Capillaries, J. Colloid Interface Sci., 236, pp. 295-304, 2001. DOI: 10.1006/jcis.2000.7413.

Wu, Y., Tahmasebi, P., Lin, C., Zahid, M.A., Dong, C. & Golab, A.N., A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based On SEM, MICP, NMR, and X-Ray CT Experiments, Mar Pet Geol., 103, pp. 12-28, 2019. DOI: 10.1016/j.marpetgeo.2019.02.003.

Piri, M. & Blunt, M.J., Three-Phase Threshold Capillary Pressures in Noncircular Capillary Tubes with Different Wettabilities Including Contact Angle Hysteresis, Phys. Rev. E., 70, 061603, 2004. DOI: 10.1103/PhysRevE.70.061603.

Khaz?ali, A.R. & Moghadasi, J., Capillary-Dominated Two-Phase Flow Modeling in Porous Media Using Starfish, J. Pet. Explor. Prod. Technol., 9, pp. 1211-1223, 2019. DOI:10.1007/s13202-018-0529-1.

Holland, J.H., Genetic Algorithms and Adaptation, in: Selfridge OG, Rissland EL, Arbib MA, editors. Adapt. Control III-Defined Syst., Boston, MA: Springer US, pp. 317-333, 1984. DOI:10.1007/978-1-4684-8941-5_21.

Negnevitsky, M., Artificial Intelligence: A Guide to Intelligent Systems, Second Ed Addison-Wesley 2005.

Downloads

Published

2022-09-09

How to Cite

Saafan, M., Mohyaldinn , M. ., & Elraies , K. . (2022). An Improved Capillary Pressure Model for Fractal Porous Media: Application to Low-Permeability Sandstone. Journal of Engineering and Technological Sciences, 54(5), 220507. https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.7

Issue

Section

Articles