Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

Authors

  • Rahmat Hidayat Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Widiyanta Gomulya Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Pina Pitriana Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Ryan Irmansyah Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Rany Miranti Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Herman Herman Physics of Photonics and Magnetism Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
  • Sahrul Hidayat Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
  • Fitrilawati Fitrilawati Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
  • Akihiko Fujii Division of Electrical, Electronic and Information Engineering, Faculty of Engineering, Osaka University, Japan
  • Masanori Ozaki Division of Electrical, Electronic and Information Engineering, Faculty of Engineering, Osaka University, Japan

DOI:

https://doi.org/10.5614/itbj.eng.sci.2012.44.3.1

Abstract

We have studied the preparation of organic-inorganic hybrid polymer precursors by sol-gel technique and their utilization for nanostructured optical components for photonic applications. The gel polymer precursors were prepared from siloxane modified by polymerizable acrylate groups, which can be processed further by photopolymerization process. Molecular structure characterizations by means of the FTIR measurements indicate the conversion of C=C bonds into C-C bonds after photopolymerization. This bond co nversion produces high cross-linking between the organic and inorganic moieties, resulting in thermally stable and chemically resistant thin polymer layer which provide unique advantages of this material for particular optical/photonic applications. By employing laser interference technique, gratings with periodicity between 400-1000 nm have been successfully fabricated. Application of those sub-micron periodicity of grating structure as active elements in optically pumped polymer laser system and Surface Plasmon Resonance (SPR) based measurement system have been also explored. The experimental results therefore also show the potential applications of this hybrid polymer as a building material for micro/nano-photonics components.

Downloads

Download data is not yet available.

References

Kuzyk, Mark G., Polymer Fiber Optics: Materials, Physics, and Applications (Optical Science and Engineering; 117), CRC Press, Taylor & Francis Group, New York, 2007.

Kuriki, K., Koike, Y. & Okamoto, Y., Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes, Chem. Rev., 102, pp. 2347-2356, 2002.

Edrington, A.C., Urbas, A.M., DeRege, P., Chen, C.X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Fetters, L.J., Joannopoulos, J.D., Fink, Y. & Thomas, E.L., Adv. Mater., 13, Polymer-Based Photonic Crystals, pp. 421-425, 2001.

Psaltis, D., Quake, S.R. & Yang, C., Developing Optofluidic Technology Through The Fusion of Microfluidics and Optics, Nature, 442, pp. 381-386, 2006.(doi:10.1038/nature05060)

Leeds, A.R., Van Keuren, E.R., Durst, M.E., Schneider, T.W., Currie, J.F. & Paranjape, M., Integration of Microfluidic and Microoptical Elements Using A Single-Mask Photolithographic Step, Sensors and Actuators A, 115, pp. 571-580, 2004.

Biswas, A., Friend, C.S. & Prasad, P.N., Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., 2000.

Sorek, Y. & Reisfeld, R., Sol-Gel Glass Wave Guides Prepared at Low Temperature, Appl. Phys. Lett., 63, p. 3256, 1993.

Kobayashi, T., Nakatsuka, S., Iwafuji, T., Kuriki, K., Imai, N.,Nakamoto, T., Claude, C.D., Sasaki, K., Koike, Y. & Okamoto, Y., Fabrication and Superfluorescence of Rare-Earth Chelate-Doped Graded Index Polymer Optical Fibers, Appl. Phys. Lett. 71, p. 2421, 1997; Slooff, L.H., van Blaaderen, A., Polman, A., Hebbink, G.A., Klink, S.I., van Veggel, F.C.J.M., Reinhoudt, D.N., & Hofstraat, J.W., Rareearth Doped Polymers for Planar Optical Amplifiers, J. Appl. Phys., 91,p. 3955, 2002.

Hidayat, R., Sugihara, O.,Tsuchimori, M., Kagami, M., Nishikubo, T. & Kaino, T., Binding of Europium Complex to Polymerizable Macrocyclic Molecules and its Optical Properties, Opt. Mat, 29, p. 1367-1374, 2007.

Sanchez, C., Julian, B., Belleville, P. & Popall, M., Applications of Hybrid Organic-Inorganic Nanocomposites, J. Mater. Chem., 15, pp. 3559-3592, 2005.

Novak, B.M., Hybrid Nanocomposite Materials between Inorganic Glasses and Organic Polymers, Adv. Mater., 5, pp. 422-433, 1993.

Schottner, G., Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials, Chem. Mater., 13, pp. 3422-3435, 2001.

Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Muller-Fiedler, R. & Rosch, O., ORMOCERs for Optical Interconnect Technology, J. Sol-Gel Sci. Technol., 20, pp. 181-186, 2001.

Haas, K. & Wolter, H., Hybrid Inorganic/Organic Polymers with Nanoscale Building Blocks: Precursors, Processing, Properties and Applications, Rev. Adv. Mater. Sci., 5, pp. 47-52, 2003.

Wen, J. & Wilkes, G.L., Organic/Inorganic Hybrid Network Materials by The Sol-Gel Approach, Chem. Mater., 8, pp. 1667-1681, 1996.

Kirkbir, F., Murata, H., Mayer, D., Chaudhari, S.R., & Sarkar, A., Drying and Sintering of Sol-Gel Derived Large SiO2 Monoliths, J. Sol-Gel Sci. Technol., 6, pp. 203-217, 1996; Nogues, J.L.R. & Moreshead, W.V., Porous Gel-Silica, A Matrix for Optically-Active Components, J. NonCryst. Solids., 121, pp. 136-142,1990.

Burzynski, R. & Prasad, P.N., Photonics and Nonlinear Optics with SolGel Processed Inorganic Glass: Organic Polymer Composite, Klein L.C.(ed.), Kluwer, Boston, Chapter 19, 1994.

Croutxe-Barghorn, C., Soppera, O. & Chevallier, M., Diffraction Gratings in Hybrid Sol-Gel Films: on The Understanding of The Relief Generation Process, Macromol. Mater. Eng., 288, pp. 219-227, 2003.

Blanc, D., Pelissier, S., Jurine, P.Y., Soppera, O., Croutxe-Barghorn, C.& Carre, C., Photo-Induced Swelling of Hybrid Sol-Gel Thin Films: Application to Surface Micro-Patterning, J. Sol-Gel Sci. Tech., 27, pp. 215-220, 2003.

Fan, X., Wua, X., Wanga, M., Qiub, J. & Kawamoto, Y., Luminescence Behaviors of Eu3+ -Diketonate Complexes in Sol-Gel-Derived Host Materials, Mater. Lett., 58, p. 2217, 2004; Fan, X., Lia, W., Wang & F. Wang, M., Luminescence Behavior of the Europium (III) Complexes with Hexafluoracetylacetonate in the ORMOSIL Matrices, Mat. Sci. & Eng. B,100, p. 147, 2003.

Homola, J., Surface Plasmon Resonance Based Sensors, Springer: New York, 2006.

Maier, S.A., Plasmonics: Fundamentals and Applications, Springer: United Kingdom, 2007.

http://www.sigmaaldrich.com/spectra/ftir/FTIR003510.PDF (accessed in Sept. 3rd, 2010)

Loudon, R., Theory of the Radiation Pressure on Dielectric Surfaces, J. Mod. Opt., 49, pp. 821-838, 2002.

Mansuripur, M., Radiation Pressure and the Linear Momentum of the Electromagnetic Field, Opt. Expr., 12, p. 5375, 2004.

Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chem. Rev., 108, pp. 462-493, 2008; Dostalek, J. & Homola, J., Surface Plasmon Resonance Sensor Based on an Array of Diffraction Gratings for Highly-Parallelized Observation of Biomolecular Interactions, Sens. and Act. B, 129, pp. 303-310, 2008.

Roh, S., Chung, T. & Lee, B., Overview of the Characteristics of Microand Nano-Structured Surface Plasmon Resonance Sensor, Sensors, 11, pp. 1565-1588, 2011.

Yu, F., Tian, S., Yao, D. & Knoll, W., Surface Plasmon Enhanced Diffraction for Label-Free Biosensing, Anal. Chem., 76, pp. 3530-3535,2004.

Sakoda, K., Optical Properties of Photonic Crystal, Springer: Berlin, 2004.

Downloads

How to Cite

Hidayat, R., Gomulya, W., Pitriana, P., Irmansyah, R., Miranti, R., Herman, H., Hidayat, S., Fitrilawati, F., Fujii, A., & Ozaki, M. (2013). Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components. Journal of Engineering and Technological Sciences, 44(3), 207-219. https://doi.org/10.5614/itbj.eng.sci.2012.44.3.1

Issue

Section

Articles

Most read articles by the same author(s)