Investigation of Dy3+ Ion Doped Borate Glasses and Their Potential for WLED and Laser Application

Authors

  • Juniastel Rajagukguk Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, 20221,
  • Lia Yuliantini Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, 40132,
  • Fitrilawati Fitrilawati Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, 45363,
  • Mitra Djamal Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, 40132,
  • Jakrapong Kaewkhao Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2020.52.6.9

Keywords:

borate glass, laser, luminescence, trivalent dysprosium, WLED

Abstract

In this research, Dy3+ ion-doped Na2O-PbO-ZnO-Li2O-B2O3 glasses were developed using the melt and quenching method. The addition of Dy3+ ions in the glass improved the optical properties. The XRD graph verified the amorphous of the glass sample. FTIR showed the vibration of BO3 and BO4 in the structure of the glass. The enhancement of NBOs in the structure of the glass affected the reduction of the bandgap energy of the glass. The hypersensitive transition of the present glass was found at 1270 nm (infrared region) due to electron movement from the 6H15/2 level to the 6H9/2+6F11/2 level. The strong white emission of the glasses came from 575 nm (yellow region) and 483 nm (blue region) when excited by 349 nm. The CIE 1931 chromaticity was located at (0.37;0.40) and verified the white emission of the glasses. Meanwhile, the trendline of the JO parameter was W2>W6>W4,indicating the high ionic character of the glass structure. The value of the calculated branching ratio and emission cross-section of Dy_1.0 glass was 0.64 and 0.90x10-20 cm2, respectively. From the analysis of results, the present glass has high potential for WLED and laser application.

Downloads

Download data is not yet available.

References

Varshneya, A.K., Fundamentals of Inorganic Glasses, Academic Press, Boston, 1994.

Rajagukguk, J., Kaewkhao, J., Djamal, M., Hidayat, R. & Ruangtaweep, Y., Structural and Optical Characteristics of Eu3+ Ions in Sodium-Lead-Zinc-Lithium-Borate Glass System, J. Mole. Struct., 1121, pp. 180-187. Oct. 2016.

Jiao, Q., Li, G., Zhou, D. & Qiu, J., Effect of the Glass Structure on Emission of Rare-Earth-Doped Borate Glasses, J. Am. Ceram. Soc., 98(12), pp. 4102-4106. Dec. 2015.

Elbashar, Y.H., Rashad, M.M. & Rayan, D.A., Physical and Mechanical Properties of Neodymium Doped Zinc Borate Glass with Different Boron Content, Silicon., 10(1), pp. 115-122, Jan. 2018.

Rajagukguk, J., Sinaga, B. & Kaewkhao, J., Structural and Spectroscopic Properties of Er3+ Doped Sodium Lithium Borate Glasses, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117342, Dec. 2019.

So?tys, M., Janek, J., ?ur, L., Pisarska, J. & Pisarski, W.A., Compositional-Dependent Europium-Doped Lead Phosphate Glasses and Their Spectroscopic Properties, Optical Materials., 40, pp. 91-96, Feb. 2015.

Gayathri Pavani, P., Sadhana, K. & Chandra Mouli, V., Optical, physical and Structural Studies of Boro-Zinc Tellurite Glasses, Physica B: Condensed Matter, 406(6-7), pp. 1242-1247, Mar. 2011.

Anjaiah, J., Laxmikanth, C., Veeraiah, N. & Kistaiah, P., Infrared Luminescence and Thermoluminescence of Lithium Borate Glasses Doped with Sm3+ ions, Materials Science-Poland. 33(1), pp. 144-151, Mar. 2015.

Li, B., Li, D., Pun, E.Y.B. & Lin, H., Dy3+ Doped Tellurium-Borate Glass Phosphors for Laser-Driven White Illumination, Journal of Luminescence, 206(10), pp. 70-78, Feb. 2018.

Kibrisli, O., Ersundu, A.E. & Ersundu, M.C., Dy3+ Doped Tellurite Glasses for Solid-State Lighting: An Investigation Through Physical, Thermal, Structural and Optical Spectroscopy Studies, Journal of Non-Crystalline Solids. 513(3), pp. 125-136, Jun. 2019.

Sandeep, K., Pandey, O.P., Jayasankar, C.K. & Chopra, N., Spectroscopic, Thermal and Structural Investigations of Dy3+ Activated Zinc Borotellurite Glasses and Nano-Glass-Ceramics for White Light Generation, Journal of Non-Crystalline Solids, 521(5), 119472, Oct. 2019.

Khan, I., Rooh, G., Rajaramakrishna, R., Srisittipokakun, N., Wongdeeying, C., Kiwsakunkran, N., Wantana, N., Kim, H.J., Kaewkhao, J. & Tuscharoen, S., Photoluminescence and White Light Generation of Dy2O3 Doped Li2O-BaO-Gd2O3-SiO2 for White Light LED, Journal of Alloys and Compounds, 774(9), pp. 244-254, Feb. 2019.

Manasa, P. &Jayasankar, C.K., Spectroscopic Assessment of Dy3+ ions in Lead Fluorosilicate Glass as a Prospective Material for Solid State Yellow Laser, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212(1), pp. 315-321, Apr. 2019.

Kaur, R., Bhatia, V., Kumar, D., Rao, S.M.D., Singh, S.P. & Kumar, A., Physical, Structural, Optical and Thermoluminescence Behavior of Dy2O3 Doped Sodium Magnesium Borosilicate Glasses, Results in Physics, 12, pp. 827-839, Mar. 2019.

Judd, B.R., Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev. 127(3), pp. 750-761, Aug. 1962.

Ofelt, G.S., Intensities of Crystal Spectra of Rare-Earth Ions, The Journal of Chemical Physics, 37(3), pp. 511-520, Aug. 1962.

Rimbach, A.C., Steudel, F., Ahrens, B. & Schweizer, S., Tb3+, Eu3+, and Dy3+ Doped Lithium Borate and Lithium Aluminoborate Glass: Glass Properties and Photoluminescence Quantum Efficiency, Journal of Non-Crystalline Solids, 499, pp. 380-386, Nov. 2018.

Hivrekar, M.M., Sable, D.B., Solunke, M.B. & Jadhav, K.M., Network Structure Analysis of Modifier CdO Doped Sodium Borate Glass Using FTIR and Raman Spectroscopy, Journal of Non-Crystalline Solids, 474, pp. 58-65, Oct. 2017.

Ozlem, Akgul, Nil Baran, Acarali, Nurcan, Tugrul, Emek Moroydor, Derun, Sabriye & Piskin, X-Ray, Thermal, FT-IR and Morphological Studies of Zinc Borate in Presence of Boric Acid Synthesized by Ulexite, Periodico Di Mineralogia, 83(1), pp. 77-88, Apr. 2014.

Doweidar, H., El-Egili, K., Ramadan, R. & Khalil, E., Structural Species in Mixed-Fluoride PbF2-CdF2-B2O3 Borate Glasses; FTIR Investigation, Vibrational Spectroscopy, 102, pp. 24-30, Mei 2019.

Thakur, S., Thakur, V., Kaur, A. & Singh, L., Structural, Optical and Thermal Properties of Nickel Doped Bismuth Borate Glasses, Journal of Non-Crystalline Solids, 512, pp. 60-71, May 2019.

Mohd Zaid, M.H., Matori, K.A., Abdul Aziz, S.Hj., Zakaria, A. & Mohd Ghazali, M.S., Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass, IJMS, 13(6), pp. 7550-7558, Jun. 2012.

El-Nahass, M.M., Soliman, H.S. & El-Denglawey, A., Absorption Edge Shift, Optical Conductivity, and Energy Loss Function of Nano Thermal-Evaporated N-type Anatase TiO2 Films, Appl. Phys. A., 122(8), 775, Aug. 2016.

Amjad, R.J., Sahar, M.R., Ghoshal, S.K., Dousti, M.R. & Arifin, R., Synthesis and Characterization of Dy3+ Doped Zinc-Lead-Phosphate Glass, Optical Materials, 35(5), pp. 1103-1108, Mar. 2013.

Halimah, M.K., Faznny, M.F., Azlan, M.N. & Sidek, H.A.A., Optical Basicity and Electronic Polarizability of Zinc Borotellurite Glass Doped La3+ Ions, Results in Physics, 7, pp. 581-589, Jan. 2017.

Carnall, W.T., Fields, P.R. & Rajnak, K., Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+ , Pm3+ , Sm3+, Dy3+ , Ho3+, Er3+, and Tm3+, The Journal of Chemical Physics, 49(10), pp. 4424-4442, Nov. 1968.

Deopa, N. & Rao, A.S., Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for w-LED and Laser Applications, Journal of Luminescence, 192, pp. 832-841, Dec. 2017.

El-Maaref, A.A., Shaaban, K.H.S., Abdelawwad, M. & Saddeek, Y.B., Optical Characterizations and Judd-Ofelt Analysis of Dy3+ Doped Borosilicate Glasses, Optical Materials, 72, pp. 169-176, Oct. 2017.

Yuliantini, L., Kaewnuam, E., Hidayat, R., Djamal, M., Boonin, K., Yasaka, P., Wongdeeying, C., Kiwsakunkran, N. & Kaewkhao, J., Yellow and Blue Emission from BaO-(ZnO/ZnF2)-B2O3-TeO2 Glasses Doped with Dy3+ for Laser Medium and Scintillation Material Applications, Optical Materials, 85, pp. 382-390, Nov. 2018.

Rajagukguk, J., Situmorang, R., Djamal, M., Rajaramakrishna, R., Kaewkhao, J. & Minh, P.H., Structural, Spectroscopic and Optical Gain of Nd3+ Doped Fluorophosphate Glasses for Solid State Laser Application, Journal of Luminescence, 216, 116738. Dec. 2019

Wang, W.C., Xiao, Y.B., Zhou, B., Xu, S.H. & Zhang, Q.Y., Structural, Thermal, and Luminescent Properties of Germanate Glass Containing Heavily Dy2O3 Content, Journal of Non-Crystalline Solids, 503-504, pp. 400-408, Jan. 2019.

Zulfiqar Ali Ahamed, Sd., Madhukar Reddy, C. & Deva Prasad Raju, B., Structural, Thermal and Optical Investigations of Dy3+ Ions Doped Lead Containing Lithium Fluoroborate Glasses for Simulation of White Light, Optical Materials, 35(7), pp. 1385-1394, Mei 2013.

Hegde, V., Chauhan, N., Viswanath, C.S.D., Kumar, V., Mahato, K.K. & Kamath, S.D., Photoemission and Thermoluminescence Characteristics of Dy3+-Doped Zinc Sodium Bismuth Borate Glasses, Solid State Sciences, 89, pp. 130-138, Mar. 2019.

Dakin, J.P. & Brown, R.G.W., Handbook of Optoelectronics, CRC Press, 2010.

Luewarasirikul, N., Kim, H.J., Meejitpaisan, P. & Kaewkhao, J., White Light Emission of Dysprosium Doped Lanthanum Calcium Phosphate Oxide and Oxyfluoride Glasses, Optical Materials, 66, pp. 559-566, Apr. 2017.

Downloads

Published

2020-11-30

How to Cite

Rajagukguk, J., Yuliantini, L., Fitrilawati, F., Djamal, M., & Kaewkhao, J. (2020). Investigation of Dy3+ Ion Doped Borate Glasses and Their Potential for WLED and Laser Application. Journal of Engineering and Technological Sciences, 52(6), 891-906. https://doi.org/10.5614/j.eng.technol.sci.2020.52.6.9

Issue

Section

Articles

Most read articles by the same author(s)