Design of a Novel Efficient High-Gain Ultra-Wide-Band Slotted H-Shaped Printed 21 Array Antenna for Millimeter-Wave Applications with Improvement of Bandwidth and Gain via the Feed Line and Elliptical Edges
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.1.7Keywords:
array antenna, CST studio, millimeter wave, miniature, ultra-wide band, slotsAbstract
This paper describes design procedure of a high-performance miniaturized antenna with an array configuration, which contributes to enhancing the communication system?s performance. The basic antenna features a compact size (6 x 6) mm2, and its single element is an H-shaped slotted patch printed on the top side of a Rogers RT5880 substrate, with a relative permittivity and thickness of 2.2 and 0.3 mm, respectively. The edge-to-edge distance of the 2 1 array antenna is 9 x 14 mm2, and the isolation between its radiation elements is 4.5 mm. To increase the capabilities of the antenna in terms of gain and bandwidth, we proceeded to use the 2 1 array configuration and then optimized the model via either the width of the feed line or the elliptical edges of the patch. The miniaturized array antenna achieved a peak gain of 12.56 dB, a directivity of 13.11 dBi, and a return loss of -47.52 dB at a resonance frequency of 91.5 GHz, with a radiation efficiency of more than 91% over an operating bandwidth of 15.83 GHz, ranging from 79.7 GHz to 95.6 GHz. The design and simulation results of the proposed antenna were obtained using the CST Studio software.
Downloads
References
Sharma, N., Gautam, A.K. &Kanaujia, B.K., Circularly Polarized Square Slot Microstrip Antenna for RFID Applications, International Journal of Microwave and Wireless Technologies, 8(8), pp. 1237- 1242, Dec. 2016.
Zaid, J., Farahani, M.M. & Denidni, T.A., Magneto-Dielectric Substrate-Based Microstrip antenna for RFID Applications, IET Microwaves, Antennas & Propagation, 11(10), pp. 1389 -1392, Jul.2017. doi:10.1049/iet-map.2016.0931.
Nguyen, C.C., Bui, M.D., Nguyen, N.K. & Nguyen, V.T., Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station, Journal of Engineering and Technological Sciences, 54(3), pp. 568?579, Jan. 2022. doi: 10.5614/j.eng.technol.sci.2022.54.3.9
Agrawal, T. & Srivastava, S., Compact MIMO Antenna for Multiband Mobile Applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(2), pp. 5542-552, Jun. 2017. doi: 10.1590/2179-10742017v16i2899.
Hmamou, A., El Ghzaoui, M., Foshi, J. & Mestoui, J., Experimental and Theoretical Analysis of Throughput of MIMO PLC Network, Journal of Engineering and Technological Sciences, 54(3), pp. 548-567, Nov. 2022. doi: 10.5614/j.eng.technol.sci.2022.54.3.8
Paul, L.C., Hosain, Md. S., Sarker, S., Prio, M.H., Morshed, M. & Sarkar, A.K., The Effect of Changing Substrate Material and Thickness on the Performance of Inset Feed Microstrip Patch Antenna, American Journal of Networks and Communications,4(3), pp. 54-58, May. 2015.
Kim, J.H., Ahn, C.H. & Chun, J.C., Bandwidth Enhancement of a Slot Antenna with An Open Stub, Microwave and Optical Technology Letters, 60(1), pp. 248 -252. Jan. 2018. doi:10.1002/mop.30951.
Avignon-Meseldzija, E., Lepetit, T., Ferreira, P.M. & Boust, F., Negative Inductance Circuits for Metamaterial Bandwidth Enhancement, EPJ Applied Metamaterials, 4(11), Nov. 2017, doi: 10.1051/epjam/2017009.
Lee, Y.-H., Cho, S.-Y. & Chung, J.-Y., SNR Enhancement of an Electrically Small Antenna Using a Non-Foster Matching Circuit, Applied Sciences, 10(13), 4464, 28 Jun. 2020. doi:10.3390/app10134464.
Alibakhshikenari, M., Virdee, B., Shukla, P., Wang, Y., Azpilicueta, L., Moghadasi, M. N., See, C. H., Elfergani, I., Zebiri, C., Abd-alhameed, R., Huynen, I., Rodriguez, J., Denidni, T. A., Falcone, F. & Limiti, E., Impedance Bandwidth Improvement of a Planar Antenna Based on Metamaterial-Inspired T-Matching Network, IEEE Access, 9, pp. 67916-67927, May. 2021. doi: 10.1109/ACCESS.2021.3076975
Alibakhshikenari, M., Virdee, B., Shukla, p., See, c. H., Abd Alhameed, R. A., falcone, f. & Limiti, E., Improved Adaptive Impedance Matching for RF Front-End Systems of Wireless Transceivers, Scientific Reports, 10, 14065 Aug. 2020, doi: 10.1038/s41598-020-71056-0
Alibakhshikenari, M., Virdee, B.S., See, C. H., Abd-Alhameed, R. A., Falcone, F. & Limiti, E., Impedance Matching Network Based on Metasurface (2-D Metamaterials) for Electrically Small Antennas, 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020 IEEE AP-S/URSI), pp.1953-1954, Montrl, Quec, Canada on 5-10 July. 2020.
Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., Automated Reconfigurable Antenna Impedance for Optimum Power Transfer, 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, pp. 1461-1463, 2019. doi: 10.1109/APMC46564.2019.9038260
Alibakhshikenari, M., Virdee, B., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., Energy Harvesting Circuit with High RF-to-DC Conversion Efficiency, 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020 IEEE AP-S/URSI), pp.1299-1300, Montrl, Quec, Canada on 5-10 July. 2020. doi: 10.1109/IEEECONF35879.2020.93296
Roy, A.A., M, J.M. & Igwue, G.A., Enhancing the Bandwidth of a Microstrip Patch Antenna using Slots Shaped Patch, American Journal of Engineering Research (AJER), 2(9), pp-23-30, Jan. 2013. doi: 10.13140/RG.2.1.2479.7044
Bhanumathiand, V. & Swathi, S., Bandwidth Enhanced Microstrip Patch Antenna for UWB Applications, ICTACT Journal on Microelectronics, 4(4), pp. 669-675, Jan. 2019, doi: 10.21917/ijme.2019.01116.
Nawale, P.A. & Zope, R.G., Design and Improvement of Microstrip Patch Antenna Parameters Using Defected Ground Structure, Int. Journal of Engineering Research and Applications, 4(6), pp. 123-129, Jun. 2014.
Rahman, M.M., Islam, M.S., Wong, H.Y., Alam, T. & Islam, M.T., Performance Analysis of a Defected Ground-Structured Antenna Loaded with Stub-Slot for 5G Communication, Sensors, 19(11), pp. 2634, Jun. 2019. doi:10.3390/s19112634.
Muhamad, W.A.W., Ngah, R., Jamlos, M. F., Soh, P.J., Jamlos, M.A. & Lago, H., Antenna Array Bandwidth Enhancement Using Polymeric Nano-Composite Substrate, Applied Physics A, 122(426), pp. 1-9, Mar. 2016, doi: 10.1007/s00339-016-9887-z.
Peng, Y., Rahman, B.M.F., Wang, X. & Wang, G., Performance Enhanced Miniaturized and Electrically Tunable Patch Antenna with Patterned Permalloy Based Magneto-Dielectric Substrate, Journal of Applied Physics, 115(17), 17A505(1-4), Jan. 2014. doi: 10.1063/1.4861203.
Yang, X.M., Wen, J., Liu, C. R., Liu, X.G. & Cui, T.J., Broadbanding of Circularly Polarized Patch Antenna by Waveguided Magneto-Dielectric Metamaterial, AIP Advances, 5(12), 127134, Dec. 2015. doi:10.1063/1.4939218.
Tyagi, N., Singh, S. & Sinha, N., Enhancement of Bandwidth in Microstrip Patch Antenna using EBG, International Journal of Computer Applications (IJCA), 92(15), pp. 27-31, Apr. 2014. doi: 10.5120/16085-5293.
Kaabal, A., El halaoui, M., ElJaafari, B., Ahyoud, S. & Asselman, A., Design of EBG Antenna with Multi-. Sources Excitation for High Directivity Applications, Procedia Manufacturing, 22, pp. 598-604,2018.
Tamrakar, M. & Kiran, K.U., Bandwidth Enhancing Method Using Tri?Ring Resonator Metamaterial for Small Devices, Microwave and Optical Technology Letters, 61(2), pp. 1-5, Dec. 2018. doi: 10.1002/mop.31701.
Patel, S.K. & Argyropoulos, C., Enhanced Bandwidth and Gain of Compact Microstrip Antennas Loaded with Multiple Corrugated Split Ring Resonators, Journal of Electromagnetic Waves and Applications, 30(7), pp. 945-961, May. 2016. doi: 10.1080/09205071.2016.1167633.
Annou, A., Berhab, S. & Chebbara, F., Metamaterial Fractal Defected Ground Structure Concepts Combining for Highly Miniaturized Triple-Band Antenna Design, Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOEA), 19(4), pp. 522-541, Dec. 2020. doi: 10.1590/2179-10742020v19i4894.
Kaushal, D. & Shanmuganantham, T., Parametric Enhancement of a Novel Microstrip Patch Antenna using Circular SRR Loaded Fractal Geometry, Alexandria Engineering Journal, 57(4), pp. 2551-2557, Sep. 2017.
Haran, M., Kumar, G. D., Garvin, A. F. & Ramesh, S., Hexagonal Microstrip Patch Antenna for Early-Stage Skin Cancer Identification, Telecommunications and Radio Engineering, 79(7), pp. 555-566, 2020. doi: 10.1615/TelecomRadEng.v79. i7.20
Kubacki, R., Czy?ewski, M. & Laskowski, D., Minkowski Island and Crossbar Fractal Microstrip Antennas for Broadband Applications, Applied Sciences, 8(3), 334, Feb. 2018. doi: 10.3390/app8030334.
Baard, C., Liu, Y. & Nikolova, N., Ultra-Wideband Low-Cost High-Efficiency Cavity-Backed Compound Spiral Antenna, Electronics,9(9), 1399, Aug. 2020. doi:10.3390/electronics9091399.
Ramesh, S. & Rao, T.R., Dielectric Loaded Exponentially Tapered Slot Antenna Utilizing Substrate Integrated Waveguide Technology for Millimeter Wave Applications, Progress in Electromagnetic Research C, 42, pp. 149-164, 2013. doi:10.2528/pierc13062003.
Ramesh, S. & Rao, T.R., High Gain Dielectric Loaded Exponentially Tapered Slot Antenna Based on Substrate Integrated Waveguide for V-Band Wireless Communications, Aces Journal, 29(11), Nov. 2014.
Niu, B. & Tan, J.-H., Bandwidth Enhancement of Low-Profile SIW Cavity Antenna with Bilateral Slots, Electronics Letters, 55(5), pp. 233-234, Mar. 2019. doi: 10.1049/el.2018.7569.
Rao, K.P., Vani, R.M. & Humayun, P.V., Planar Microstrip Patch Antenna Array with Gain Enhancement, Procedia Computer Science, 143, pp. 48-57, 2018. doi: 10.1016/j.procs.2018.10. 350.
Hu, W., Wen, G., Inserra, D., Huang, Y., Li, J. & Chen, Z., A Circularly Polarized Antenna Array with Gain Enhancement for Long-Range UHF RFID Systems, Electronics, 8(4), 400, Apr. 2019. doi: 10.3390/electronics8040400.
Alibakhshikenari, M., Babaeian, F., Virdee, B.S., Asa, S., Azpilicueta, L., See, C.H., Althuwayb, A.A., Huynen, I., Abd-Alhameed, R., Falcone, F. & Limiti, E., A Comprehensive Survey on Various Decoupling Mechanisms with Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems, IEEE Access, 8, pp. 192965-193004, Oct. 2020. doi: 10.1109/ACCESS.2020.3032826
Alibakhshikenari, M., Virdee, B.S. & Limiti, E., Study on Isolation and Radiation Behaviours of a 344 Array-Antennas Based on SIW and Metasurface Properties for Applications in Terahertz Band Over 125-300 GHz, Optik, International Journal for Light and Electron Optics, 206, 163222, Mar. 2020.
Alibakhshikenari, M., Virdee, B.S., Shukla, P., See, C.H., Abd-Alhameed, R., Khalily, M., Falcone, F., Limiti, E., Quazzane, K. & Parchin, N., Isolation Enhancement of Densely Packed Array Antennas with Periodic MTM-Photonic Bandgap for SAR and MIMO Systems, IET Microwaves, Antennas & Propagation, 14(3), pp. 183 - 188, Feb. 2020.
Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd?Alhameed, R.A., Falcone, F. & Limiti, E., Surface Wave Reduction in Antenna Arrays Using Metasurface Inclusion for MIMO and SAR Systems, Radio Science,54(11), pp. 1067?1075, Nov. 2019.
Alibakhshikenari, M., Khalily, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A. & Limiti, E., Mutual-Coupling Isolation Using Embedded Metamaterial EM Bandgap Decoupling Slab for Densely Packed Array Antennas, IEEE Access, 7, pp. 5182?51840, Apr. 2019. doi: 10.1109/ACCESS.2019.2909950.
Alibakhshikenari, M., Khalily, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A. & Limiti, E., Mutual Coupling Suppression Between Two Closely Placed Microstrip Patches Using EM-Bandgap Metamaterial Fractal Loading, IEEE Access, 7, pp. 23606 ? 23614, Feb. 2019. doi: 10.1109/ACCESS.2019.2899326.
Alibakhshikenari, M., Virdee, B.S., Azpilicueta, L., Moghadasi, M.N., Akinsolu, M.O., See, C., Liu, B. , Abd-Alhameed, R.A., Falcone, F., Huynen, I., Denidni, T.A. & Limiti, E., A Comprehensive Survey of Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications, IEEE Access, 8, pp. 144778-144808, Aug. 2020. doi:10.1109/ACCESS.2020.3013698.
Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., High-Isolation Leaky-Wave Array Antenna Based on CRLH Metamaterial Implemented on SIW with 30o Frequency Beam-Scanning Capability at Millimeter-Waves, Electronics, 8(6), 642, Jun. 2019. doi: 10.3390/electronics806064.
Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., Super-Wide Impedance Bandwidth Planar Antenna for Microwave and Millimeter-Wave Applications, Sensors, 19(10), 2306, 9 pages, May 2019, doi: 10.3390/s19102306.
Alibakhshikenari, M., Virdee, B.S., Khalily, M., Shukla, P.R., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., Beam-Scanning Leaky-Wave Antenna Based on CRLH-Metamaterial for Millimeter-Wave Applications, IET Microwaves, Antennas & Propagation, 13(8), pp. 1129-1133, Mar. 2019. doi: 10.1049/iet-map.2018.5101.
Alibakhshikenari, M., Virdee, B.S., AbdulAli & Limiti, E., A Novel Monofilar-Archimedean Metamaterial Inspired Leaky-Wave Antenna For Scanning Application For Passive Radar Systems, Microwave and Optical Technology Letters, 60(8), pp. 2055?2060, Jun. 2018.
Alibakhshikenari, M., Virdee, B. S., AbdulAli & Limiti, E., Miniaturized Planar-Patch Antenna Based on Metamaterial L-shaped Unit-Cells for Broadband Portable Microwave Devices and Multiband Wireless Communication Systems, IET Microwaves, Antennas & Propagation, 12(7), pp. 1080 -1086, Jun. 2018.
Alibakhshikenari, M., Virdee, B. S., AbdulAli & Limiti, E., Compact Single Layer Travelling-Wave Antenna Design Using Metamaterial Transmission-Lines, Radio Science, 52(12), pp. 1510-1521, Dec. 2017. doi: 10.1002/2017RS006313.
Alibakhshikenari, M., Ali, E.M., Soruri, M., Dalarsson, M., Moghadasi, M.N., Virdee, B.S., Stefanovic, C., Dabrowska, A.P., Koziel, S., Szczepanski, S. & Limiti, E., A Comprehensive Survey on Antennas on-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems, IEEE Access, 10, pp. 3668-3692, Jan. 2022. doi: 10.1109/ACCESS.2021.3140156
Alibakhshikenari, M., Virdee, B.S., Althuwayb, A.A., Mariyanayagam, D. & Limiti, E., Compact and Low-Profile On-Chip Antenna Using Underside Electromagnetic Coupling Mechanism for Terahertz Front-End Transceivers, Electronics, 10(11), 1264, May. 2021, doi: 10.3390/electronics10111264.
Althuwayb, A.A., Alibakhshikenari, M., Virdee, B.S., Benetatos, H., Falcone, F. & Limiti, E., Antenna on Chip (AoC) Design Using Metasurface and SIW Technologies for THz Wireless Applications, Electronics, 10(9), 1120, May. 2021. doi: 10.3390/electronics10091120.
Alibakhshikenari, M., Virdee, B.S., Althuwayb, A.A., Sonia, A., See, C.H., Abd-Alhameed, R.A., Falcone, F. & Limiti, E., Study on on-Chip Antenna Design Based on Metamaterial-Inspired and Substrate-Integrated Waveguide Properties for Millimetre-Wave and THz Integrated-Circuit Applications, Journal of Infrared, Millimeter, and Terahertz Waves,42, pp. 17-28, Jan. 2021. doi: 10.1007/s10762-020-00753-8.
Alibakhshikenari, M., Virdee, B. S., Khalily, M., See, C. H., Abd-Alhameed, R. A., Falcone, F., Denidni, T. A. & Limiti, E., High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications, IEEE Antennas and Wireless Propagation Letters, 19(9), pp. 1576-1580, Sept. 2020. doi: 10.1109/lawp.2020.3010865.
Ghattas, A.S.W., Saad, A.A.R. & Khaled, E.E.M., Compact Patch Antenna Array for 60 GHz Millimeter-Wave Broadband Applications, Wireless Personal Communications, 114(1), pp. 2821-2839, Oct. 2020, doi: 10.1007/s11277-020-07505-w.
Fagiani, A., Vogel, M. & Cerqueira, S.Jr.A., Material Characterization and Propagation Analysis of mm-Waves Indoor Networks, Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOEA), 17(4), pp. 628-637, Dec. 2018. doi:10.1590/2179-10742018v17i41548.
Kumar, M.N. & Shanmuganantham, T., E-Shaped Slot Antenna Backed with Substrate Integrated Waveguide Cavity for 60GHz Applications, Proc. IEEE Conference on Emerging Devices and Smart Systems (ICEDSS), 3-4 March. 2017, Mahendra Engineering College, Tamilnadu, India, 2017. doi: 10.1109/icedss.2017.8073651.
Ramesh, S. & Rao, T.R., Indoor Channel Characterization Studies For V-Band Gigabit Wireless Communications Using Dielectric-Loaded Exponentially Tapered Slot Antenna, International Journal of Microwave and Wireless Technologies, 8(8), pp. 1243-1251, 2015. doi: 10.1017/s1759078715000781.
Ullah, R., Ullah, S., Umar, S. M., Ullah, R. & Babar, K., Design and Modeling of a 28/38/60/70/80 GHz Antenna for Fifth Generation 5G Mobile and Millimeter Wave Applications, Proc. of the 1st International Conference on Electrical, Communication and Computer Engineering (ICECCE), Swat, Pakistan, July. 2019. doi: 10.1109/ICECCE47252.2019.8940640.
Ullah, S., Yeo, W.H., Kim, H. & Yoo, H., Development Of 60-Ghz Millimeter Wave, Electromagnetic Bandgap Ground Planes for Multiple-Input Multiple-Output Antenna Applications, Scientific Reports, 10(8541), 2020. doi: 10.1038/s41598-020-65622-9.
Kim, S., Rida, A., Lakafosis, V., Nikolaou, S. & Tentzeris, M.M., 77-Ghz Mm wave Antenna Array on Liquid Crystal Polymer for Automotive Radar and RF Front-End Module, ETRI Journal, 41(2), pp. 262-269, Jan. 2019. doi: 10.4218/etrij.2018-0163.
Imran, D., Farooqi, M.M., Khattak, M. I., Ullah, Z., Khan, M.I., Khattak, M.A. & Dar, H., Millimeter Wave Micro strip Patch Antenna for 5G Mobile Communication, International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, Feb. 2018. doi: 10.1109/ICEET1.2018.8338623.